On Teaching and Learning Machine Translation

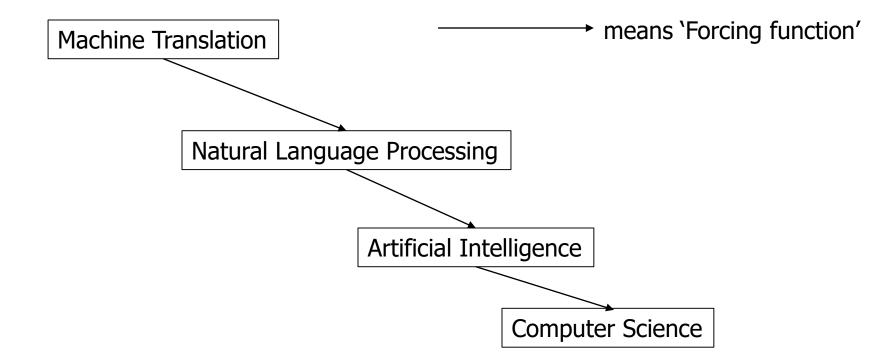
Pushpak Bhattacharyya CSE Dept., IIT Bombay and IIT Patna ACL 16, Berlin 10th August 2016

President's talk- expectations

 Scintillating talks from past presidentsinstructive, humorous, setting agenda

- I thought of dwelling on MT teaching and learning
 - Complements MT research

Why in particular Machine Translation? *Forcing Function*



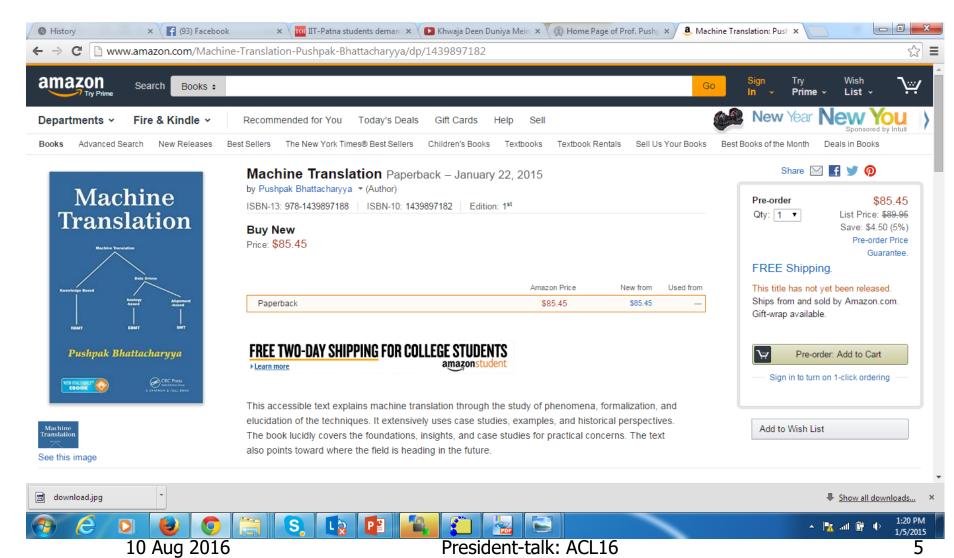
Making the makers of machine translation

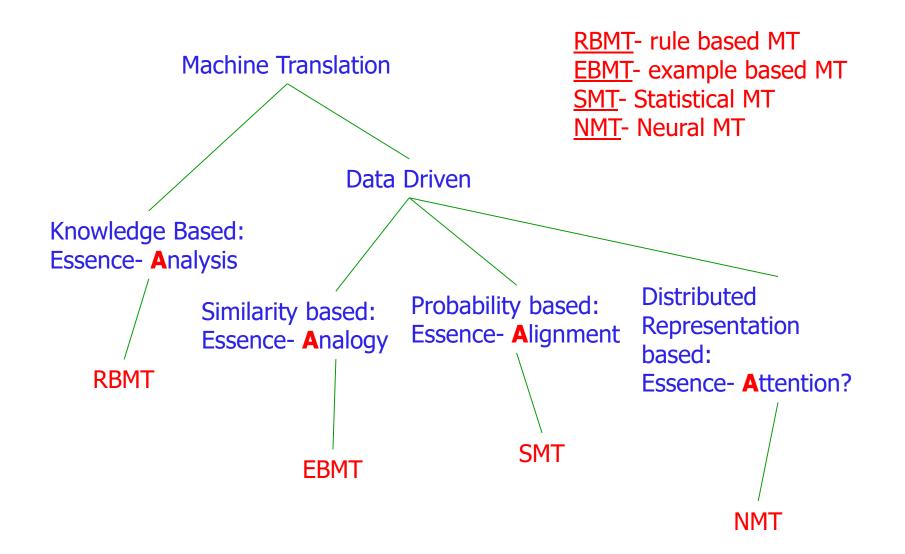
 Practitioners of Machine Translation make and study machines that translate between languages

How to teach MT to the would be practitioners?

Book resulting from 25 years of teaching and researching in NLP and MT

http://www.amazon.com/Machine-Translation-Pushpak-Bhattacharyya/dp/1439897182





Questions

What unifies these approaches of RBMT, EBMT, SMT and now NMT?

Why did these approaches meet with varied amounts of success?

What are the essential elements of these approaches?

Very specific 2 questions (1/2)

- Within RBMT, why has transfer based MT been more successful than interlingua based MT?
 - Case of SYSTRAN (transfer based)

 Our experience of PAN Indian Indian Language to Indian Language MT (transfer based)

Very specific 2 questions (2/2)

Though both are data driven, why did EBMT's journey languish midway, while SMT kept progressing?

 Questions like the above are important for teaching, learning and doing research in MT

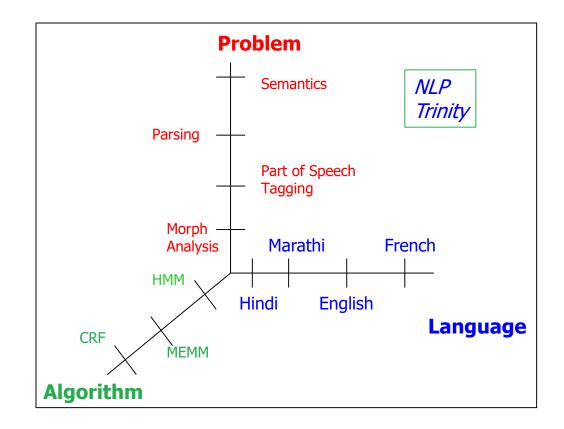
Plausible answers: based on the nature of MT approaches

- ONE thing RBMT should do well:
 - Answer- Analysis
- One thing SMT should do well:
 - Answer- Alignment
- One thing EBMT do well:
 - Answer- Analogy
- One thing NMT should do well:
 - Answer- Attention?

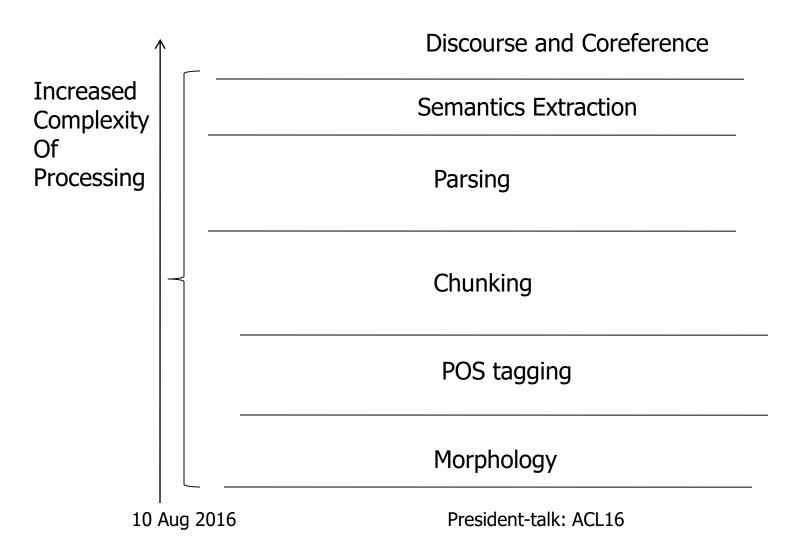
Main message of this presentation

- To teach, learn, and do research in MT, one should FIRST note and understand the role of
 - Analysis in RBMT
 - Alignment in SMT
 - Analogy in EBMT
 - Attention in NMT?

MT is a part of NLP which is a Trinity

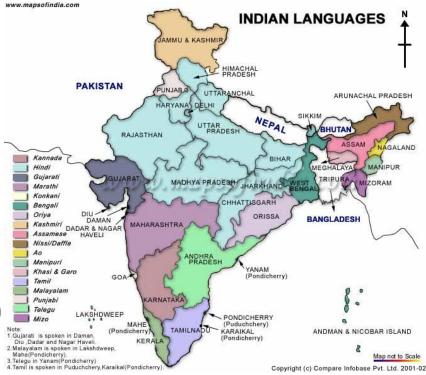


NLP Layer/Pipeline



Multilinguality- a way of life in India

- People speak, read, write 3 languages routinely
- Code mixing and language switch are a way of life
- Major streams:
 - Indo European
 - Dravidian
 - Sino Tibetan
 - Austro-Asiatic
- Large speaker population
 - Hindi and Urdu: 5th (~500 milion)
 - Bangla: 7th (~300 million)
 - Marathi 14th (~70 million)



10 Aug 2016

Why is MT difficult: Language Divergence

- Remember the trap that MT fell into in the 60s?- MT is just dictionary look up and substitution
- Languages have different ways of expressing meaning
 - Lexico-Semantic Divergence
 - Structural Divergence

Our work on English-IL Language Divergence with illustrations from Hindi (Dave, Parikh, Bhattacharyya, Journal of MT, 2002)

Different ways of expressing meaning

Manipuri: *kampor asi mon mon laui blanket this soft soft is* English:

English:

This blanket is very soft

Hindi:

yaha kambal bahut naram hai Bangla:

ei kambal <mark>ti</mark> khub naram Marathi:

haa kambal khup naram aahe

Languages differ in expressing thoughts: Finnish agglutination

Finnish: "istahtaisinkohan"

English: "I wonder if I should sit down for a while"

Analysis:

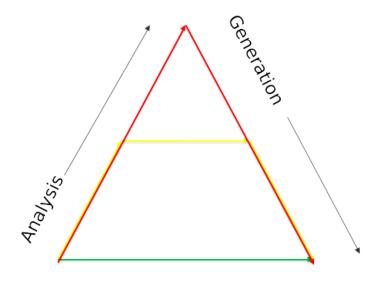
- ist + "sit", verb stem
- ahta + verb derivation morpheme, "to do something for a while"
- isi + conditional affix
- n + 1st person singular suffix
- ko + question particle
- han a particle for things like reminder (with declaratives) or "softening" (with questions and imperatives)

Kinds of MT Systems (point of entry from source to the target text)



(Vauquois. 1968)

Simplified Vauquois



Source Language Target Language Interlingua Based Translation

Transfer Based Translation

Direct Translation

RBMT-EBMT-SMT spectrum: knowledge (rules) intensive to data (learning) intensive

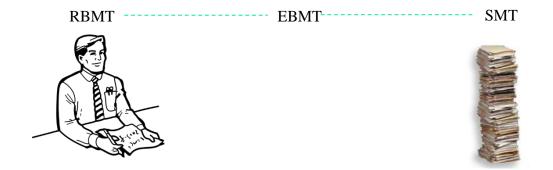


Illustration of difference of RBMT, SMT, EMT

- Peter has a house
- Peter has a brother
- This hotel has a museum

The tricky case of 'have' translation

English

Peter has a house

- Peter has a brother
- This hotel has a museum

Marathi

- पीटर<u>कडे</u> एक घर <u>आहे/</u>piitar kade ek ghar aahe
- पीटर<u>ला</u> एक भाऊ <u>आहे/</u>piitar <u>laa</u> ek bhaauu <u>aahe</u>
- ह्या हॉटेल<u>मध्ये</u> एक संग्रहालय <u>आहे/</u> hyaa hotel <u>madhye</u> ek saMgrahaalay <u>aahe</u>

RBMT

If

syntactic subject is animate AND syntactic object is **owned** by subject

Then

"have" should translate to "kade ... aahe"

If

syntactic subject is animate AND syntactic object denotes **kinship** with subject

Then

"have" should translate to "laa ... aahe"

If

syntactic subject is **inanimate**

Then

"have" should translate to "madhye ... aahe"

10 Aug 2016

X have $Y \rightarrow$

X_kade Y aahe /

X_laa Y aahe /

X_madhye Y aahe

10 Aug 2016

SMT

• has a house $\leftarrow \rightarrow$ kade ek ghar aahe <cm> one house has ■ has a car ← → kade ek gaadii aahe <cm> one car has has a brother $\leftarrow \rightarrow$ lag ek bhaau aahe <cm> one brother has • has a sister $\leftarrow \rightarrow$ laa ek bahiin aahe <cm> one sister has • hotel has $\leftarrow \rightarrow$ hotel madhye aahe hotel <cm> has ■ hospital has ← → haspital madhye aahe hospital <cm> has

SMT: new sentence

"This hospital has 100 beds"

- *n*-grams (*n=1, 2, 3, 4, 5*) like the following will be formed:
 - "This", "hospital",... (unigrams)
 - "This hospital", "hospital has", "has 100",... (bigrams)
 - "This hospital has", "hospital has 100", ... (trigrams)

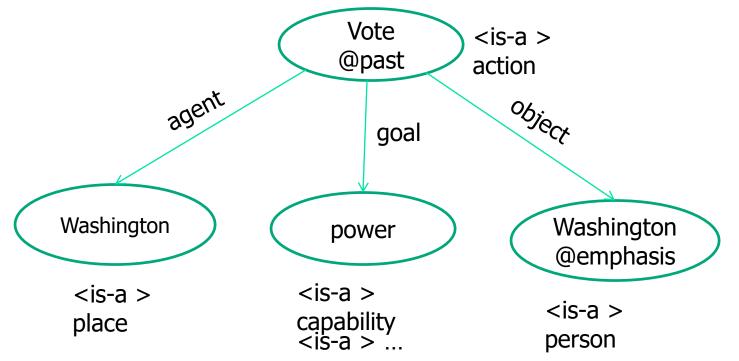
DECODING !!!

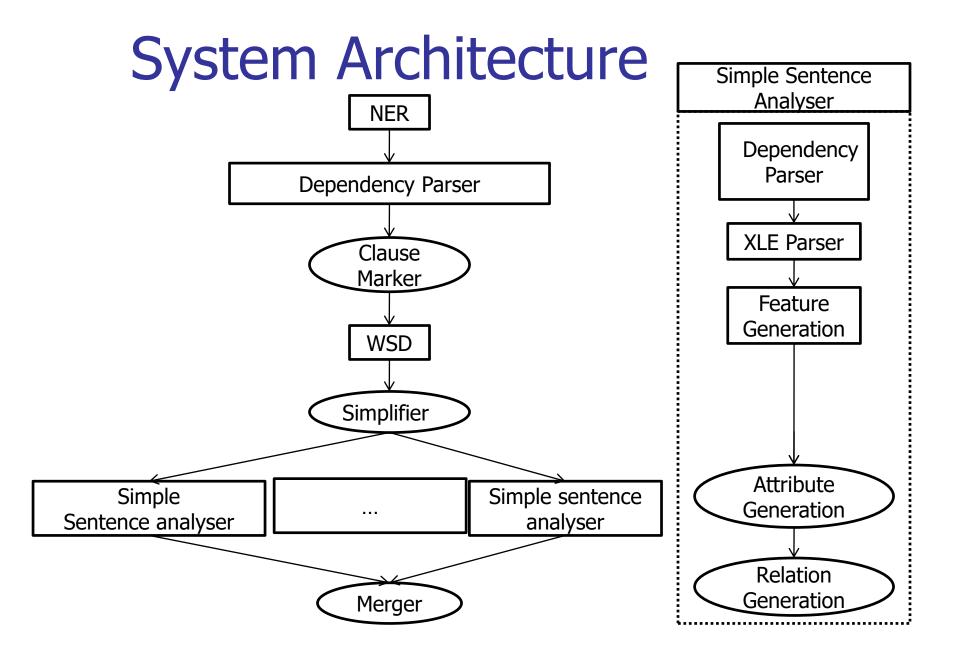
Essentials of RBMT

Interlingua based MT: Universality hypothesis

Universality hypothesis: At the level of "deep meaning", all texts are the "same", whatever the language.

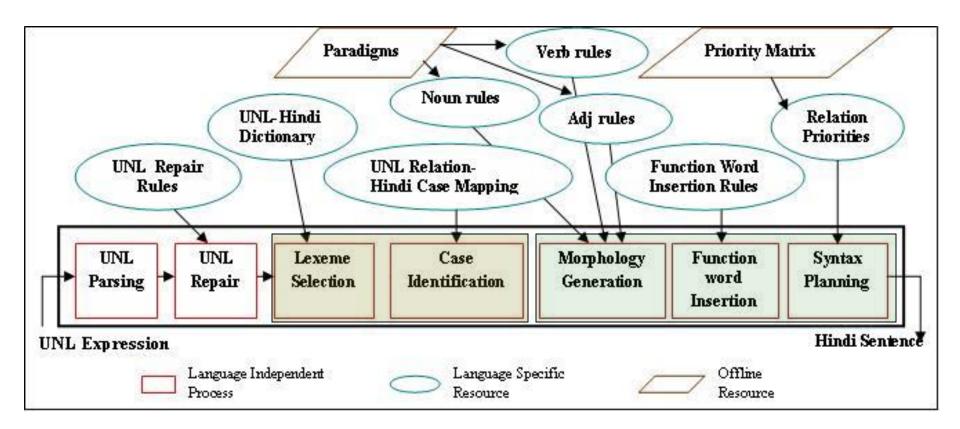
Interlingua based MT: semantic parsing- complete disambiguation Washington, Washington voted to power, heralding new hopes and aspirations.





Generation Architecture (with example from Universal Networking Language Project)

Deconversion = Transfer + Generation

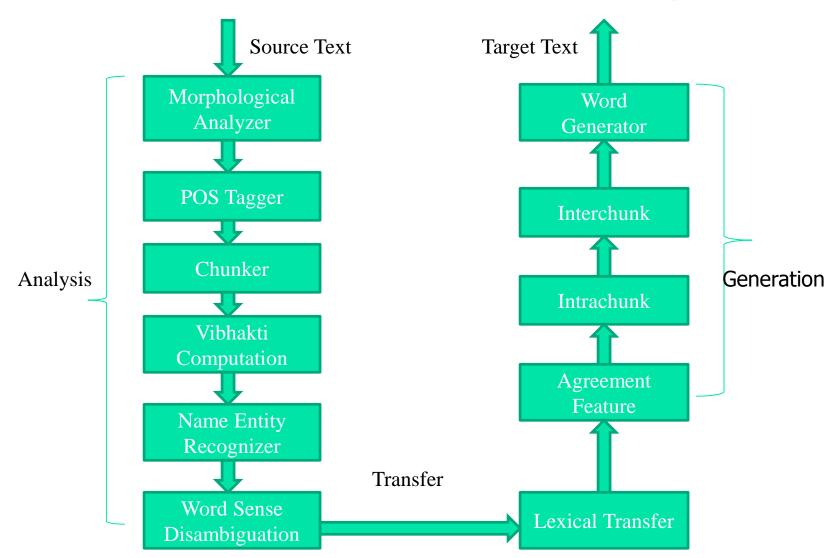


10 Aug 2016

Transfer based MT: Indian Language to Indian Language Machine Translation (ILILMT)

- Bidirectional Machine Translation System
- Developed for nine Indian language pairs
- Approach:
 - Transfer based
 - Modules developed using both rule based and statistical approach

Architecture of ILILMT System



Differentiating Interlingual and Transfer based MT: *TBMT can choose the level of transfer!* Need to emphasise this point

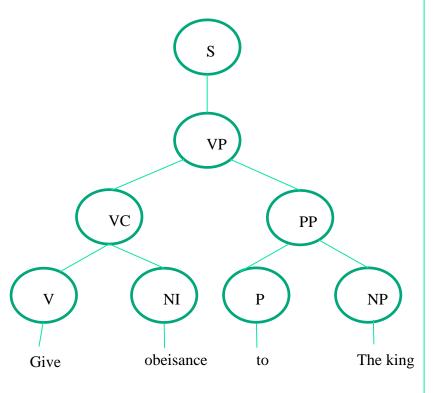
- राजा को नमन करो (Hindi; Indo Aryan)
- raajaa ko naman karo
- HG: king to obeisance do
- Give obeisance to the king (English; Indo-Aryan)
- राजाला नमन करा (Marathi; Indo Aryan)
- raajaalaa naman karaa
- king_to obeisance do

- அரசரை வணங்கு (Tamil; Dravidian)
- aracarai vanaNku
- king_to obeisance_do
- নিংথৌবু খইরম্ম (Manipuri; Tibeto Burman)
- niNgthoubu khoirammu
- king_to obeisance do

transfer amongst different language families

Language	Inflected Verb/Inflected	Inflected Noun/Inflected
	verb, innected	Noun chunk
English	give obeisance	To the king
Hindi	naman karo	raajaa ko
Marathi	naman karaa	raajaalaa
Tamil	vanaNku	aracarai
Manipuri	Khoirammu	niNgthoubu

English parse tree



Transfer rules:

VC-PP inversion (all languages)

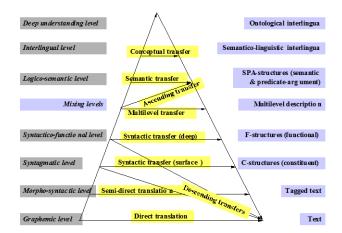
<u>VC</u>

- V-NI inversion (H & M: naman karo, naman karaa)
- V-NI combination → nominal verb with appropriate inflection (T, Mn: vanaNku, khoirammu)

<u>PP</u>

- PP inversion with P becoming a postposition (H: raajaa ko)
- suffixed form of 'king' expressing accusative case (M, T, Mn: raajaalaa, aracarai, niNgthoubu)

Essential element of Statistical Machine Translation



Linguistics 101: Czeck-English data

- [nesu]
- [ponese]
- [nese]
- [nesou]
- [yedu]
- [plavou]

"I carry" "He will carry" "He carries" "They carry" "I drive" "They swim"

To translate ...

- I will carry.
- They drive.
- He swims.
- They will drive.

Thought process of students

Naturally begin to align

Segment strings

Establish correspondences

Select and eliminate possibilities

10 Aug 2016

Foundation

- Data driven approach
- Goal is to find out the English sentence *e* given foreign language sentence *f* whose *p(e|f)* is maximum.

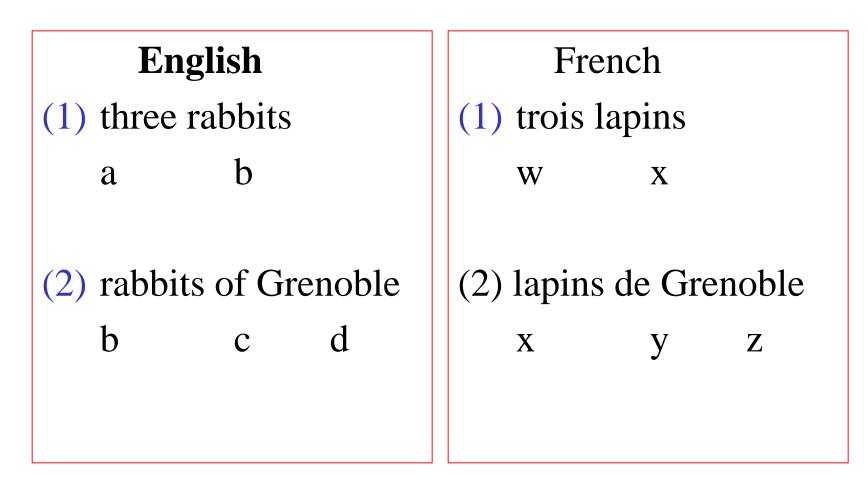
$$\tilde{e} = \underset{e \in e^*}{\operatorname{argmax}} p(e|f) = \underset{e \in e^*}{\operatorname{argmax}} p(f|e)p(e)$$

- Translations are generated on the basis of statistical model
- Parameters are estimated using bilingual parallel corpora

The all important word alignment

- The edifice on which the structure of SMT is built (Brown et. Al., 1990, 1993; Och and Ney, 1993)
- Word alignment → Phrase alignment (Koehn et al, 2003)
- Word alignment → Tree Alignment (Chiang 2005, 200t; Koehn 2010)
- Alignment at the heart of Factor based SMT too (Koehn and Hoang 2007)

Word alignment is the crux of the matter: how to convey the essential idea?



Initial Probabilities: each cell denotes $t(a \leftarrow \rightarrow w)$, $t(a \leftarrow \rightarrow x)$ etc.

	а	b	С	d
W	1/4	1/4	1/4	1/4
X	1/4	1/4	1/4	1/4
У	1/4	1/4	1/4	1/4
Z	1/4	1/4	1/4	1/4

	CO	unt	S						
a b	а	b	С	d	bcd	а	b	С	d
\leftrightarrow					\leftrightarrow				
w x					x y z				
W	1/2	1/2	0	0	W	0	0	0	0
X	1/2	1/2	0	0	X	0	1/3	1/3	1/3
У	0	0	0	0	У	0	1/3	1/3	1/3
Z	0	0	0	0	Z	0	1/3	1/3	1/3

"oounto"

10 Aug 2016

Revised probabilities table

	а	b	С	d
W	1/2	1/4	0	0
X	1/2	5/12	1/3	1/3
У	0	1/6	1/3	1/3
Z	0	1/6	1/3	1/3

	"revised counts"								
a b	а	b	С	d	bcd	а	b	С	d
\leftrightarrow					\leftrightarrow				
w x					x y z				
w	1/2	3/8	0	0	W	0	0	0	0
х	1/2	5/8	0	0	х	0	5/9	1/3	1/3
У	0	0	0	0	У	0	2/9	1/3	1/3
Z	0	0	0	0	Z	0	2/9	1/3	1/3

10 Aug 2016

Re-Revised probabilities table

	а	b	С	d
W	1/2	3/16	0	0
X	1/2	85/144	1/3	1/3
У	0	1/9	1/3	1/3
Z	0	1/9	1/3	1/3

Continue until convergence; notice that (b,x) binding gets progressively stronger; b=rabbits, x=lapins

Derivation: Key Notations

English vocabulary : V_E French vocabulary : V_F No. of observations / sentence pairs : S Data D which consists of S observations looks like, $e^{1}_{1}, e^{1}_{2}, \dots, e^{1}_{l^{1}} \Leftrightarrow f^{1}_{1}, f^{1}_{2}, \dots, f^{1}_{m^{1}}$ $e^{2}_{1}, e^{2}_{2}, \dots, e^{2}_{l^{2}} \Leftrightarrow f^{2}_{1}, f^{2}_{2}, \dots, f^{2}_{m^{2}}$ $e^{s_1}, e^{s_2}, \dots, e^{s_l} \Leftrightarrow f^{s_1}, f^{s_2}, \dots, f^{s_m}$ $e^{S_1}, e^{S_2}, \dots, e^{S_1}s \Leftrightarrow f^{S_1}, f^{S_2}, \dots, f^{S_m}s$ No. words on English side in s^{th} sentence : l^s No. words on French side in s^{th} sentence : m^s $index_E(e_p^s)$ =Index of English word e_p^s in English vocabulary/dictionary $index_F(f_a)$ =Index of French word f_a in French vocabulary/dictionary

(Thanks to Sachin Pawar for helping with the maths formulae processing)

10 Aug 2016

Modeling: Hidden variables and parameters

Hidden Variables (Z) :

Total no. of hidden variables = $\sum_{s=1}^{S} l^s m^s$ where each hidden variable is as follows: $z_{pq}^s = 1$, if in s^{th} sentence, p^{th} English word is mapped to q^{th} French word. $z_{pq}^s = 0$, otherwise

Parameters (*O*) :

Total no. of parameters = $|V_E| \times |V_F|$, where each parameter is as follows:

 $P_{i,j}$ = Probability that i^{th} word in English vocabulary is mapped to j^{th} word in French vocabulary

Likelihoods

Data Likelihood *L(D; O)* :

$$L(D;\Theta) = \prod_{s=1}^{S} \prod_{p=1}^{l^s} \prod_{q=1}^{m^s} \left(P_{index_E(e_p^s), index_F(f_q^s)} \right)^{z_{pq}^s}$$

Data Log-Likelihood LL(D; Θ) :

$$LL(D;\Theta) = \sum_{s=1}^{S} \sum_{p=1}^{l^s} \sum_{q=1}^{m^s} z_{pq}^s \log\left(P_{index_E(e_p^s), index_F(f_q^s)}\right)$$

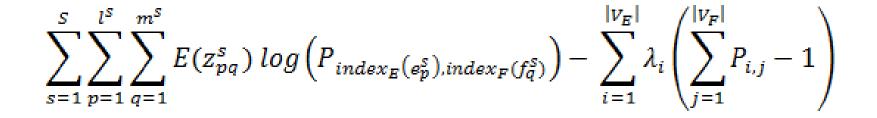
Expected value of Data Log-Likelihood E(LL(D; O)) :

$$E(LL(D;\Theta)) = \sum_{s=1}^{S} \sum_{p=1}^{l^s} \sum_{q=1}^{m^s} E(z_{pq}^s) \log\left(P_{index_E(e_p^s), index_F(f_q^s)}\right)$$

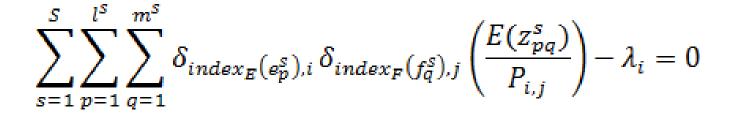
10 Aug 2016

Constraint and Lagrangian

$$\sum_{j=1}^{|V_F|} P_{i,j} = 1$$
 , $\forall i$



Differentiating wrt P_{ij}



$$P_{i,j} = \frac{1}{\lambda_i} \sum_{s=1}^{s} \sum_{p=1}^{l^s} \sum_{q=1}^{m^s} \delta_{index_E(e_p^s),i} \delta_{index_F(f_q^s),j} E(z_{pq}^s)$$

 $\sum_{j=1}^{|V_F|} P_{i,j} = 1 = \sum_{j=1}^{|V_F|} \frac{1}{\lambda_i} \sum_{s=1}^{s} \sum_{p=1}^{l^s} \sum_{q=1}^{m^s} \delta_{index_E(e_p^s),i} \delta_{index_F(f_q^s),j} E(z_{pq}^s)$

Final E and M steps

M-step

$$P_{i,j} = \frac{\sum_{s=1}^{S} \sum_{p=1}^{l^{s}} \sum_{q=1}^{m^{s}} \delta_{index_{E}}(e_{p}^{s})_{,i} \delta_{index_{F}}(f_{q}^{s})_{,j} E(z_{pq}^{s})}{\sum_{j=1}^{|V_{F}|} \sum_{s=1}^{S} \sum_{p=1}^{l^{s}} \sum_{q=1}^{m^{s}} \delta_{index_{E}}(e_{p}^{s})_{,i} \delta_{index_{F}}(f_{q}^{s})_{,j} E(z_{pq}^{s})}, \forall i, j$$

E-step

$$E(z_{pq}^{s}) = \frac{P_{index_{E}}(e_{p}^{s}), index_{F}(f_{q}^{s})}{\sum_{q'=1}^{m^{s}} P_{index_{E}}(e_{p}^{s}), index_{F}(f_{q'}^{s})}, \forall s, p, q$$

Essential element of Example based Machine Translation

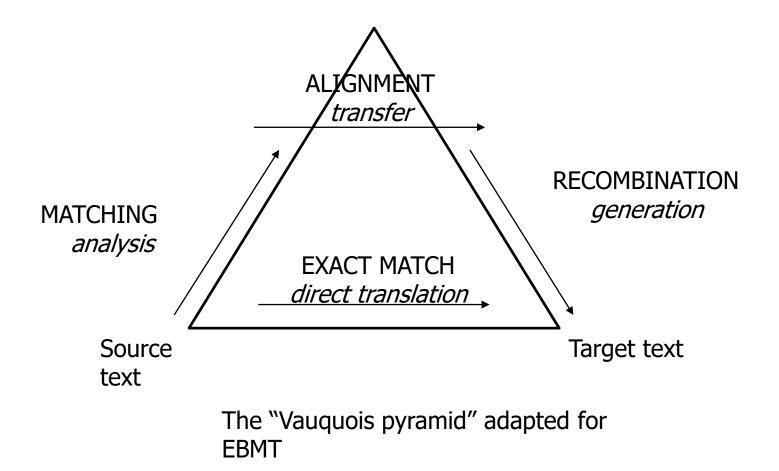
Nagao's seminal paper 1984 (1/2)

"Man does not translate a simple sentence by doing *deep linguistic analysis*, rather,

man does the translation, first, by properly decomposing an input sentence into certain *fragmental phrases* (very often, into case frame units), and then (p.t.o)

Nagao's seminal paper 1984 (2/2)

by translating these fragmental phrases into other language phrases, and finally by properly composing these fragmental translations into one long sentence. The translation of each fragmental phrase will be done by the *analogy* translation principle with proper examples as its reference"



Analogy: the crux of the matter (need to emphasise)

 Needs measure of similarity that is grounded- similar texts should indeed be *measured* as similar and dissimilar ones as dissimilar, and

 Large lexical knowledge networks that provide resources for measuring similarity. Different ways of measuring text similarity

- Bag of words (BoW) based
- Permutation based
- N-gram based
- Vector based
- Tree based
- Semantic graph based
- Feature based

Bag of words

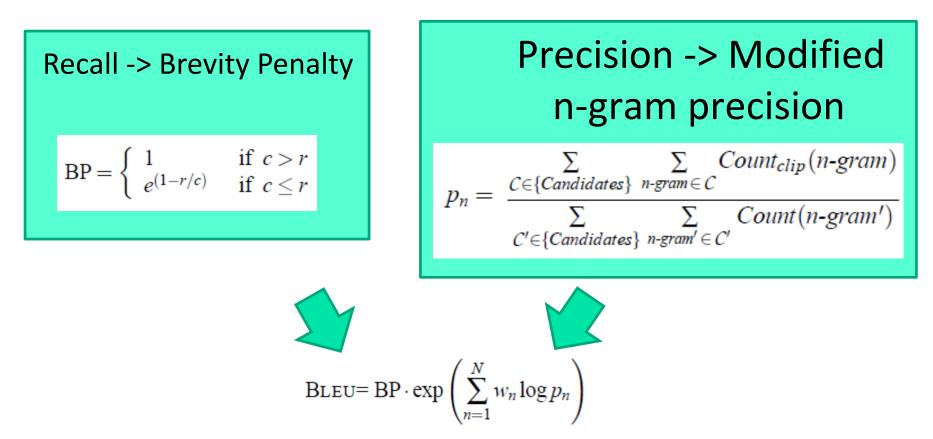
B(S₁) and B(S₂) which are bags of words, i.e., sets of word in the two sentences

$$Dice(B(S_1), B(S_2)) = \frac{|B(S_1) \cap B(S_2)|}{|B(S_1)| + |B(S_2)|}$$

$$Jackard(B(S_{1}), B(S_{2})) = \frac{|B(S_{1}) \cap B(S_{2})|}{|B(S_{1}) \cup B(S_{2})|}$$

10 Aug 2016

N-gram based matching: BLEU score



C: candidate sentence(s); C': reference sentence(s); clip: to clip the count to max number of occurrences of an n-gram in the corpus; wn: weightage to a particular n-gram precision

10 Aug 2016

Vector based

- Vectors of 1/0, term presence or absence, or
- Vectors of term frequencies (TF), or
- Vectors of TF*IDF, where IDF is the inverse document frequency
- Finally use cosine similarity

$$cosine(V(S_{1}), V(S_{2})) = \frac{V(S_{1}) V(S_{2})}{|V(S_{1})| \cdot |V(S_{2})|}$$
$$idf(w) = \log\left(\frac{N}{|S; w \in S|}\right)$$

where, N is the total number of sentences. the denominator inside 'log' gives the total number of sentences containing the word 'w'.

10 Aug 2016

Tree based: Constituency

- N_1 : number of nodes in S_1 's constituency tree
- N₂: number of nodes in S₂'s constituency tree.
- *M*: number of nodes matched in a particular order of traversal (pre-, in- or post- etc.)

$$S(S_1, S_2)$$
: similarity of
 S_1 and $S_2 =$
 $\frac{M}{\max(N_1, N_2)}$

Tree based: Dependency

- D₁: number of dependency relations in S₁
- D₂: number of dependency relations in S₂
- *w_r*: weight of matching the relation part (same for all relations)
- W_{arg1} : weight of matching the first argument (same for all relations)
- W_{arg2} : weight of matching the 2nd argument (same for all relations)
- *Rs*: relations in two trees
- As: first arguments in the relations
- *Bs*: second arguments in the relations

$$S(S_1, S_2) = \frac{\sum_{i=1}^{|D_1|} \sum_{j=1}^{|D_2|} [w_r \delta(R_i^1, R_j^2) + w_{\arg 1} \delta(A_1^i, A_1^i) + w_{\arg 2} \delta(B_1^i, B_2^j)]}{\max(D_1, D_2)}$$

Feature based (very rich)

	\sum^{n}	$W_i \times s(f_i^I, f_i^R)$
S(I,R) =	<i>i</i> =1	
S(I, K) -		n

 $\sum w_i$

i=1

Sl. No.	Feature	Value	Similarity function s(.)
1	Length	Integer	equality
2	Active/Passive	1 (active)/ 0	equality
		(passive)	
3	Parse tree		Tree similarity between
			two parse trees
4	Concatenation of	Vector of	Cosine similarity
	vectors of words	Boolean/real	
	forming the	values	
	sentence		
5	Bag of words	Set	Dice/Jackard and such
	forming the		other similarity measures
	sentence		
6	Position of nouns	A function	equality
	of the sentence in	combining the	
	the wordnet	information	
	hypernymy	content of the	
	hierarchy	individual nouns	

7	Position of the	"distance"	A rule that says similar or
	two main verbs	between the two	dissimilar, depending on
	of the sentence in	main verbs in	the distance being within a
	Verb Ocean ²	Verb Ocean	threshold or not
8	main verb, its	A slot-filler	Equality or subset-check
	type and	structure for each	on the slots and their fillers
	argument frame	sentence	
	as given by the		
	verbnet3, types of		
	nouns		
	semantically		
	related to it		
9	Frame semantic	Slot-filler	Equality or subset-check
	representation of	structure	on the slots and their fillers
	the sentence as		
	per Framenet4		

Deep semantics based

- Word meaning
- Semantic relations
- Speech acts (tense, number and other pragmatic attributes like focus, emphasis etc.)
- Use of text entailment

EBMT's 'decoding': RECOMBINATION

- Null Adaptation
- Re-instantiation
- Abstraction and re-specialization
- Case based substitution
- Semantic graph or graph-part substitution

Example of re-instantiation

- Input: Tomorrow, today will be yesterday
- Example matched: Yesterday, today was tomorrow
- कल, आज कल था
- kal, aaj kal thaa
- Yesterday, today tomorrow was

(*kal* is ambiguous in Hindi standing for *both* 'yesterday' and 'tomorrow')

10 Aug 2016

(boundary friction problem)

- Yesterday, today, and tomorrow are all hyponyms of day.
- Main predicates in the example sentence and the input sentences was and will be.
- So, *adjusting* for the difference in predicates and matching the arguments, the translation is obtained as:

Re-instantiation leading to translation

- कल, आज कल होगा
- kal, aaj kal hogaa
- HG: Tomorrow, today yesterday will_be

Summary (1/2)

- To teach MT: emphasise the 3 'A's as the "first thing first"
 - RBMT- Analysis (NLP pipeline)
 - SMT- Alignment (especially, IBM Model 1)
 - EBMT- Analogy (deep matching)

 Compare and contrast the approaches: the taxonomy diagram

Summary (2/2)

- Analyse critically the historical development: presence and absence of tools and resources, computing power and so on and their effect
- Emphasise and re-emphasise the seminal role of EM based word alignment
- Emphasise and reemphasise the fact that transfer based MT can CHOOSE the level of transfer unlike that of pure interlingua based MT

These observations are based on (1/2)

- 25 years of teaching and researching NLP and MT
- Book writing (2010-2015)
- Multiple projects on MT
 - UNL (1996-2000): interlingua based, UNU funded
- Sampark (Indian language to Indian language MT, 2000-till date): Transfer based, Ministry of IT funded "Technology Development in IL" 10 Aug 2016

These observations are based on (2/2)

- Multiple projects on MT
 - Anuvadaksh (English to Indian language MT, 2006- till date) SMT based, Ministry of IT funded "Technology Development in IL"
 - MT Projects sponsored by Elsevier (English-Bahasa, English-Marathi): SMT with Pivot and Factors
 - MT Projects sponsored by Accenture (Eng-Hin-Mar): Hybrid

President-talk: ACL16

And frequent observations like this

	hi	ur	ра	bn	gu	mr	kK	ta	te	ml	en
hi		61.28	68.21	34.96	51.31	39.12	37.81	14.43	21.38	10.98	29.23
ur	61.42		52.02	29.59	39.00	27.57	28.29	11.95	16.61	8.65	22.46
pa	73.31	56.00		29.89	43.85	30.87	30.72	10.75	18.81	9.11	23.83
bn	37.69	32.08	31.38		28.14	22.09	23.47	10.94	13.40	8.10	18.76
gu	55.66	44.12	45.14	28.50		32.06	30.48	12.57	17.22	8.01	19.78
mr	45.11	32.60	33.28	23.73	32.42		27.81	10.74	12.89	7.65	17.62
kK	41.92	34.00	34.31	24.59	31.07	27.52		10.36	14.80	7.89	17.07
ta	20.48	18.12	15.57	13.21	16.53	11.60	11.87		8.48	6.31	11.79
te	28.88	25.07	25.56	16.57	20.96	14.94	17.27	8.68		6.68	12.34
ml	14.74	13.39	12.97	10.67	9.76	8.39	9.18	5.90	5.94		8.61
en	28.94	22.96	22.33	15.33	15.44	12.11	13.66	6.43	6.55	4.65	

Baseline PBSMT - % BLEU scores (S1)

- Clear partitioning of translation pairs by language family pairs, based on translation accuracy.
 - Shared characteristics within language families make translation simpler
 - Divergences among language families make translation difficult

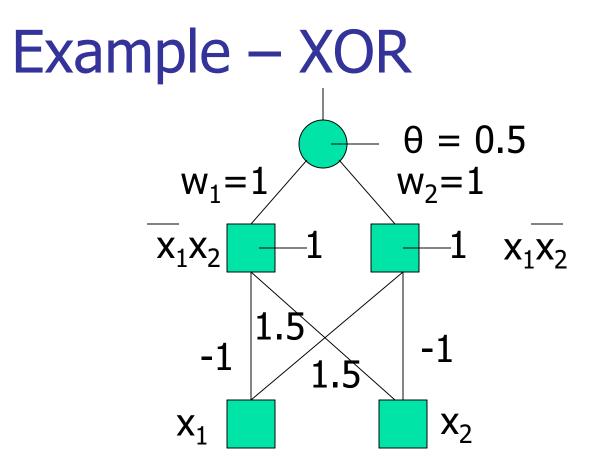
(Anoop Kunchukuttan, Abhijit Mishra, Pushpak Bhattacharyya, LREC 2014)

10 Aug 2016

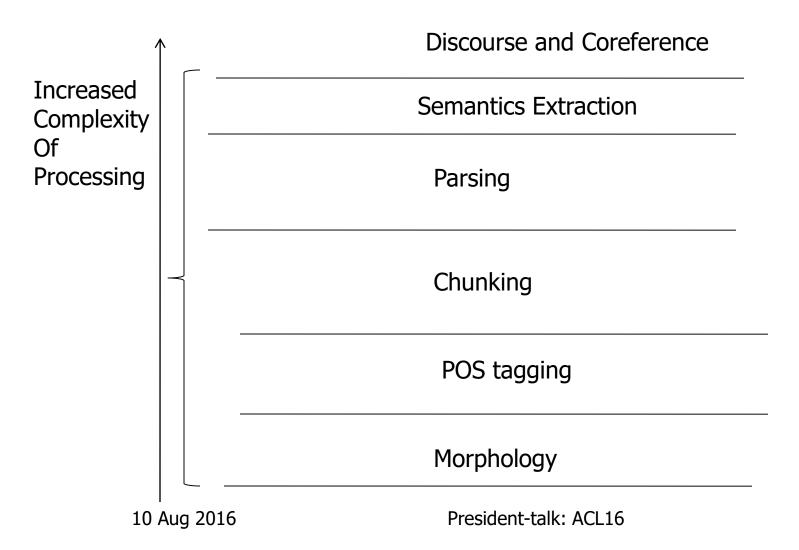
President-talk: ACL16

What about neural machine translation?

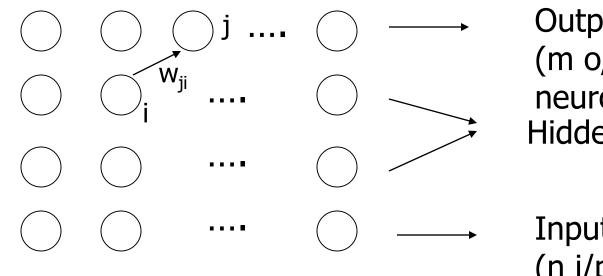
- NMT a particular instance of solving mapping problems by neural networks
- Remember Feedforward Neural Nets?
- Hidden layer does amazing things



NLP Layer/Pipeline



Multilayer neural net



Output layer (m o/p neurons) Hidden layers

Input layer (n i/p neurons)

- NLP pipeline $\leftarrow \rightarrow$ NN layers
- Discover bigger structures bottom up, starting from character?
- Words, POS, Parse, Sentence, Discourse?

What about neural machine translation? (contd.)

• NMT a particular instance of solving mapping problems by neural networks

 Spectacular success in speech and vision (as high as 50% reduction in error rate) What about neural machine translation? (contd.)

- Not such spectacular success in NLP, though
 - Why?
 - Any particular point whose time is yet to come? (remember EBMT?)
 - Any core algorithm waiting to be developed (remember EM based alignment in SMT?)
 - Need to go deeper into Attention? Another 'A'

Thank you

Ongoing work (1/2)

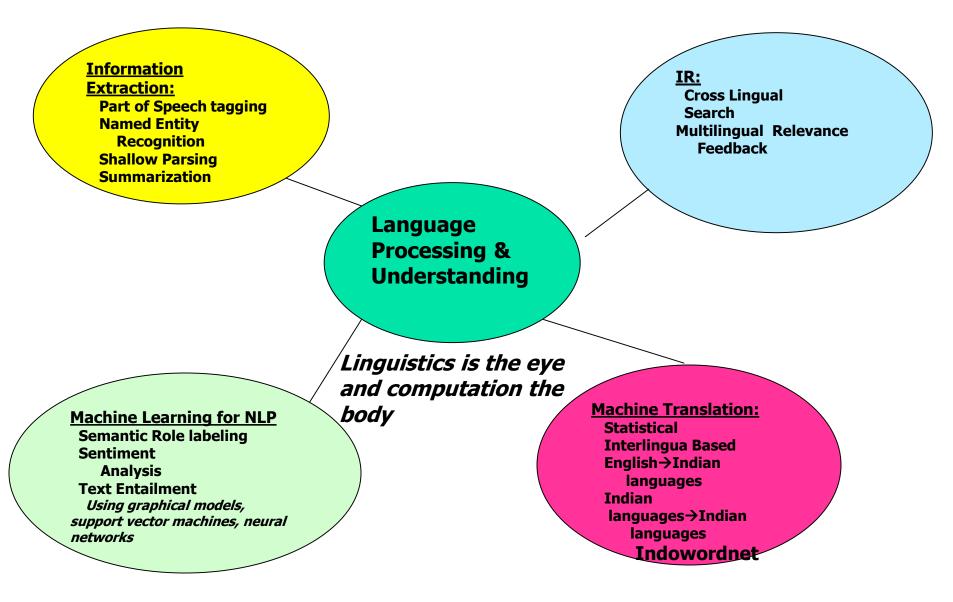
Cognitive NLP for MT

John finds it difficult to handle the situation

John is in a soup

- Automatic correction of machine translation output- post editing
- Injection of morphological information in the training corpus
- Pivot study

NLP@IITB- since 1996 at CSE Dept.

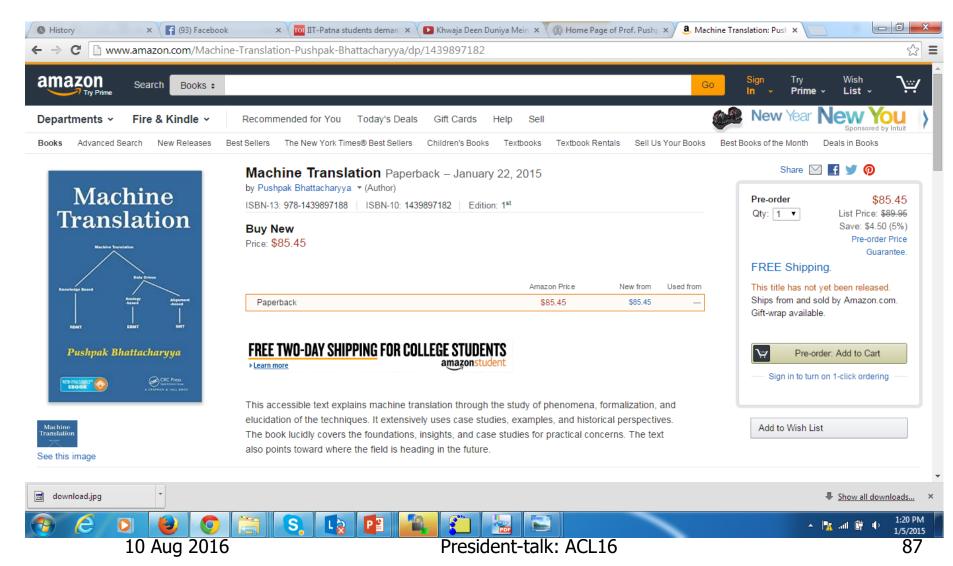


Facts and figures- NLP@IITB

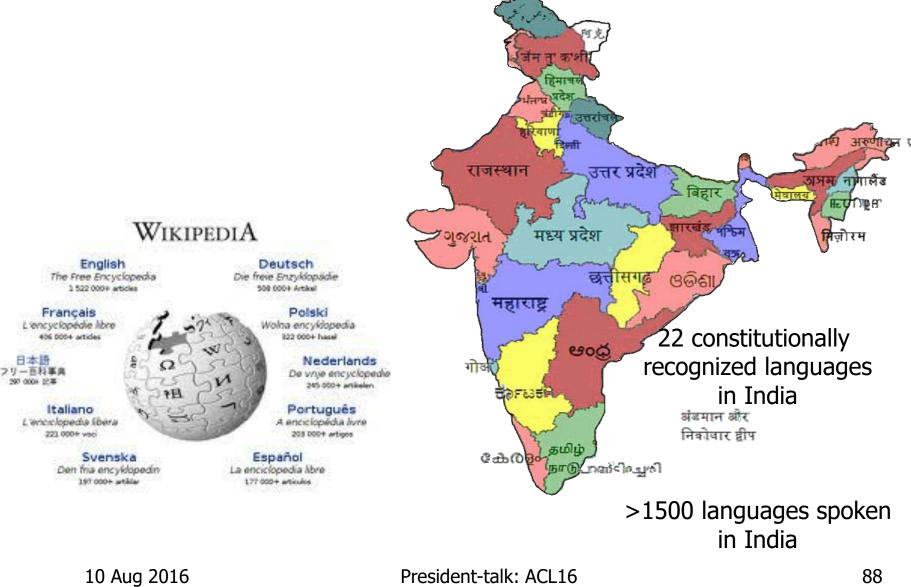
- 5 associated faculty: 3 CSE + 2 HSS
- PhD students: graduated-13; ongoing-17
- M.Tech students: graduated-115; ongoing-14
- Publications in highly visible fora: ACL, COLING, WWW, ECML, EMNLP
- Sponsorship: Ministry of IT, TCS, Yahoo, IBM, Microsoft, HP Labs, Xerox, AOL
- Technology developed used by major search engine companies of the world
- Major international conferences: COLING 2012, 8-16 DEC, 2012, at IIT Bombay- 700 participants

Book

http://www.amazon.com/Machine-Translation-Pushpak-Bhattacharyya/dp/1439897182



a multilingual world, A Multilingual country



Pubs: http://ww.cse.iitb.ac.in/~pb

Resources and tools: http://www.cfilt.iitb.ac.in

Thank You