Noun Compound Interpretation

By Girishkumar Ponkiya

Mentor Mr. Girish Palshikar

TRDDC, Pune

May-July 2014

Motivational Example

- Our website homepage logo design was finalized by that indian software designer team.
 - (ROOT
 - (S

(NP (PRP\$ Our) **(NN website) (NN homepage) (NN logo) (NN design)**) (VP (VBD was)

```
(VP (VBN finalized)
```

(PP (IN by)

(NP (DT that) (JJ indian) (NN software) (NN designer) (NN team))))) (. .)))

Motivational Example

- Our website homepage logo design was finalized by that indian software designer team.
- poss(design-5, Our-1)
- nn(design-5, website-2)
- nn(design-5, homepage-3)
- nn(design-5, logo-4)
- nsubjpass(finalized-7, design-5)
- auxpass(finalized-7, was-6)
- root(Root-0, finalized-7)
- prep(finalized-7, by-8)
- det(team-13, that-9)
- amod(team-13, indian-10)
- nn(team-13, software-11)
- nn(team-13, designer-12)
- pobj(by-8, team-13)

Some more examples..

- Simple (?)
 - bone marrow
 - web site design
 - internet connection speed test
 - plastic water bottle
- Complicated (?)
 - colon cancer tumor suppressor protein

Simplifying complexity

• colon cancer tumor suppressor protein

[colon <u>cancer</u>] [[tumor <u>suppressor</u>] protein]

- [tumor suppressor protein] which is implicated in [colon cancer]
 - (IN; LOCATION)
- [protein] that acts as [tumor suppressor]
 - (IS; AGENT)
- [suppressor] that inhibits [tumor(s)]
 - (OF; PURPOSE)
- [cancer] that occurs in [(the) colon]
 - (OF; IN; LOCATION)

Corpus Statistics

- 2-4% of the tokens in various corpora are part of noun compounds (Baldwin and Tanaka, 2004)
 - 2.6% in the British National Corpus
 - 3.9% in the Reuters corpus
 - 2.9% in the Mainichi Shimbun Corpus
- 100M-word British National Corpus (BNC)
 - 939K distinct wordforms
 - 256K distinct noun compounds

Introduction

 Noun Compound (NC): "a sequence of two or more nouns"

e.g. box juice, computer science department

- Individual nouns in the NC are known as "components"
- Three main problems:
 - Identifying noun compound
 - Syntactic analysis (*bracketing*)
 - Semantic Relation assignment

Bracketing

- Determining syntactic structure
- Examples:

(1) liver cell antibody
 [[liver cell] antibody]
 (2) liver cell line

[liver [cell line]]

Bracketing

Methods

e.g. computer science department, linguistics graduate program

- Adjacency model

based on frequency of (N1,N2) and (N2,N3) in bia-gram data

Dependency model

based on frequency of (N1,N3) and (N2,N3) in dependecy data

- Hybrid

• n-gram, adjacency, dependecy, and some more features

Semantic Interpretation

- Approaches
 - Rule based (Vanderwende, 1994)
 - Statistical
 - Analogy based resoning
 - "similar component words should have the same SR"
 e.g. cat:meow <=> dog:bark
 - semantic disambiguation
 - Disambiguation relative to an underlying predicate or paraphrase

Levi's Theory (1978)

- Idea: study how noun compound can be derived
- Two syntactic processes:
 - predicate nominalization
 - For example, in sentence:
 - ..the President refused General MacArthur's request..
 - \rightarrow presidential refusal
 - predicate deletion
 - Example:

pie made of apples \rightarrow apple pie

• Proposed set of abstract recoverably deletable predicates

Recoverably Deletable Predicates

RDP	Example	${f Subj/obj}$	Traditional Name
CAUSE ₁ CAUSE ₂ HAVE ₁ HAVE ₂ MAKE ₁ MAKE ₂ USE BE IN FOR FROM ABOUT	tear gas drug deaths apple cake lemon peel silkworm snowball steam iron soldier ant field mouse horse doctor olive oil price war	object subject object subject object object object object object object object	causative causative possessive/dative possessive/dative productive/composit. productive/composit. instrumental essive/appositional locative purposive/benefactive source/ablative topic

O Seaghdha's Thoery (2007)

- Revised the inventory of Levi (1978)
 - The inventory of relations should have good **coverage**
 - history teacher, woman driver
 - Relations should be disjunct, and should describe a **coherent** concept
 - Overlapping category boundaries
 - annotation guidelines
 - The **class distribution** should not be overly skewed or sparse
 - The concepts underlying the relations should generalize to other linguistic phenomena
 - The guidelines should make the **annotation process** as simple as possible
 - The categories should provide useful semantic information.
- 2000 samples in dataset

Warren's Theory (1978)

- Based on study of Brown corpus
- Abstract semantic relations organized into a four-level hierarchy
 - **CONSTITUTE**: A is something that wholly constitutes B, or vice-versa
 - Source-Result, Result-Source, Copula
 - **POSSESSION**: A is something of which B is a part or a feature or vice versa
 - Part-Whole, Whole-Part, Size-Whole
 - LOCATION: A is the location or origin of B (in time or space)
 - Place-OBJ, Time-OBJ, Origin-OBJ
 - ACTIVITY-ACTOR: The comment indicates the activity or interest with which B is habitually concerned
 - **RESEMBLANCE**: A indicates something that B resembles
 - Comparant-Compared
 - **PURPOSE**: A is purpose of B, or vice-versa.

Improving Warren's Theory

- Barker & Szpakowicz (1998)
 - Flat 20 relations
 - From Wall Street Journal (Kim and Baldwin, 2005)
 - 2,169 unique 2-term NC
 - 1,571 unique 3-term NC
- Nastase & Szpakowicz (2003)
 - 5 coarse-grained super-relations
 - 30 fine-grained relations
 - 600 samples in dataset

A Lexical Semantic Approach to Interpreting and Bracketing English Noun Compounds

Su Nam Kim and Timothy Baldwin

Overview

- Goal
 - Automatic NC interpretation
- Approach
 - Analogical, based on WordNet similarity
- Other
 - NC interpretation helps bracketing

Semantic Relations

- Used the set of 20 SRs proposed by Barker and Szpakowicz (1998)
 - Relatively well-established in NLP research
 - Found to adequately capture the dataset used in this paper

• List of SRs in next slide

Relation	Definition	Example
AGENT	N_2 is performed by N_1	student protest, band concert, military assault
BENEFICIARY	N_1 benefits from N_2	student price, charitable compound
CAUSE	N_1 causes N_2	printer tray, flood water, film music, story idea
CONTAINER	N_1 contains N_2	exam anxiety, overdue fine
CONTENT	N_1 is contained in N_2	paper tray, eviction notice, oil pan
DESTINATION	N_1 is destination of N_2	game bus, exit route, entrance stairs
EQUATIVE	N_1 and N_2	composer arranger, player coach
INSTRUMENT	N_1 is used in N_2	electron microscope, diesel engine, laser printer
LOCATED	N_1 is located at N_2	building site, home town, solar system
LOCATION	N_1 is the location of N_2	lab printer, desert storm, internal combustion
MATERIAL	N_2 is made of N_1	carbon deposit, gingerbread man, water vapour
OBJECT	N_1 is acted on by N_2	engine repair, horse doctor
POSSESSOR	N_1 has N_2	student loan, company car, national debt
PRODUCT	N_1 is a product of N_2	automobile factory, light bulb, color printer
PROPERTY	N_2 is N_1	elephant seal, blue car, big house, fast computer
PURPOSE	N_2 is meant for N_1	concert hall, soup pot, grinding abrasive
RESULT	N_1 is a result of N_2	storm cloud, cold virus, death penalty
SOURCE	N_1 is the source of N_2	chest pain, north wind, foreign capital
TIME	N_1 is the time of N_2	winter semester, morning class, late supper
TOPIC	N_2 is concerned with N_1	computer expert, safety standard, horror novel

NC Interpretation: Approach

• For 2-term NC

$$S((N_{i,1}, N_{i,2}), (B_{j,1}, B_{j,2})) = \alpha S1 + (1 - \alpha)S2$$

NC Interpretation: Example

• For 2-term NC

	Training noun	Test noun	S_{ij}	Combined Similarity
$N_1 \\ N_2$	apple juice	chocolate milk	0.71 0.83	0.77
N_1 N_2	morning milk	chocolate milk	0.27 1.00	0.64

	Training noun	Test noun	S_{ij}	Combined Similarity
N_1 N_2	personal interest	loan rate	0.32 0.84	0.58
$egin{array}{c} N_1 \ N_2 \end{array}$	bank interest	loan rate	0.75 0.84	0.80

NC Interpretation: Approach

• For 2-term NC

$$m = \operatorname{argmax}_{j} S((N_{i,1}, N_{i,2}), (B_{j,1}, B_{j,2}))$$

Data Collection

- Source: Wall Street Journal
- Collected 2-term and 3-terms NCs
 - 2,169 unique 2-term NCs
 - 1,571 unique 3-term NCs

Data Annotation

- 2 trained human annotator
- First step: bracketing 3-term NC
- Second step: tagged outermost 2-term NC (N2 N3) for ((N1 N2) N3), and (N1 N3) for (N1 (N2 N3))
- Multiple SRs were assigned
 e.g. *debt cost* : SOURCE or CAUSE ??
- Agreement for SR
 - 2-term: 52.31 %
 - 3-term: 49.28 %

	2-term NCs				3-term NCs			
Relation	Test Train		ing Tes		st Tra		ining	
	N+	Μ	N+	Μ	N+	Μ	N+	Μ
AGENT	10	1	5	0	9	0	7	1
BENEFICIARY	10	1	7	1	2	0	3	0
CAUSE	54	5	74	3	21	0	18	0
CONTAINER	13	4	19	3	13	1	7	2
CONTENT	40	2	34	2	23	0	18	0
DESTINATION	1	0	2	0	0	0	1	0
EQUATIVE	9	0	17	1	1	0	2	1
INSTRUMENT	6	0	11	0	2	0	3	0
LOCATED	12	1	16	2	3	0	5	0
LOCATION	29	9	24	4	19	0	27	0
MATERIAL	12	0	14	1	10	0	11	0
OBJECT	88	6	88	5	22	6	26	3
POSSESSOR	33	1	22	1	25	4	21	6
PRODUCT	27	0	32	6	27	1	26	1
PROPERTY	76	3	85	3	33	0	43	0
PURPOSE	159	13	161	9	89	7	95	6
RESULT	7	0	8	0	3	0	4	0
SOURCE	75	11	99	15	61	0	44	1
TIME	25	1	19	0	19	0	24	0
TOPIC	465	24	447	39	438	16	437	15
TOTAL	1163	82	1184	96	820	35	822	36

Experiments #1

- For 2-term NC
- With equal weight for head and modifier similarities
- *k*-NN methods with various *k* values
 - k=1 was found better
- Contribution of training-data size

Experiment #1: Result

M	Accuracy	
Human annotation	Inter-annotator agreement	52.3%
Majority class	Baseline	43.0%
D d l l	WUP	53.3%
Path-based	LCH	52.9%
	JCN	46.7%
Information content-based	LIN	47.4%
Relatedness	LESK	42.4%
Random	RANDOM	21.8%

Table 7. Accuracy of NC interpretation for the different WordNet-based scoring methods over our 2-term NC dataset

Experiment #1: Result

Fig. 3. Learning Curve with respect to the size of the training data

Experiment #2

To check relative contribution of head and modifier

$$S((N_{i,1}, N_{i,2}), (B_{j,1}, B_{j,2})) = \alpha S1 + (1 - \alpha)S2$$

- For example
 - Head playes important role in PROPERTY relation
 e.g. *fairy penguin*
 - Modifirer plays important role in TIME relation i.e. winter coat

Experiment #2: Result

Fig. 4. Classifier accuracy at different α values

Experiment #2: Result

Various Relational Approaches

- Using 8 prepositions (Lauer, 1995)
- Verbs + prepositions (Nakov and Hearst, 2006)
- Using mind pattern from web (Turney, 2006)
 e.g. "Y * couses X" for CAUSE
- Pattern from corpus analysis (Turney & Littman, 2005)
 - 128 fixed phrases using 64 joining-terms

Relational Approaches: Example

0.87 "cooking utensils" FOR

Human:be used for(17),be used in(9),facilitate(4),help(3),aid(3),be required for(2),be used during(2),be found in(2),be utilized in(2),involve(2),...Progr.:be used for(43),be used in(11),make(6),be suited for(5),replace(3),be used during(2),

 $facilitate(2), turn(2), keep(2), be for(1), \ldots$

Table 3. Human- and programme-proposed vectors, and cosines for sample noun-noun compounds. The common verbs for each vector pair are underlined.

Use of Semantic Relation in NC

- Paraphrase-augmented machine translation
- Summarisation evaluation
- Textual entailment
- Information retrieval
 - index normalisation, query expansion, query refinement, results re-ranking, etc.
- Data mining
 - Migraine treatment \rightarrow " * which prevents migraines"

Our work

- Goal: extract "rules" for compound based on semantics of components
 - Used 20 relations porposed by Barker and Szpakowicz (1998)
- Explored ConceptNet, WordNet, and VerbNet
- Used CN2

References

- Judith N Levi. "*The syntax and semantics of complex nominals*". Academic Press New York, 1978.
- Beatrice Warren. "Semantic patterns of noun-noun compounds". Acta Universitatis Gothoburgensis. Gothenburg Studies in English Goteborg, 41:1–266, 1978
- Ken Barker and Stan Szpakowicz. "Semi-automatic recognition of noun modifier relationships". In *Proceedings of the 17th international conference on Computational linguistics-Volume 1*, pages 96–102. Association for Computational Linguistics, 1998.
- Su Nam Kim and Timothy Baldwin. "A lexical semantic approach to interpreting and bracketing english noun compounds". *Natural Language Engineering*, 19(03):385–407, 2013.
- Preslav Nakov. "On the interpretation of noun compounds: Syntax, semantics, and entailment". *Natural Language Engineering*, 19(03):291–330, 2013
- Vivi Nastase and Stan Szpakowicz. "Exploring noun-modifier semantic relations". In Fifth international workshop on computational semantics (IWCS-5), pages 285–301, 2003

Thanks..