
Chapter 3

Classical Optimization and
Search Techniques

In this chapter we discuss a few popular optimization techniques in use in current
day natural language processing algorithms. First we present the Hidden Markov
Model (HMM) used for part-of-speech tagging (POS-tagging) among other tasks.
Then we formulate the POS-tagging problem using HMM and present its classical
solution which is due to the Viterbi algorithm.

Then we present the Maximum Entropy approach, which is a heuristic used
in problems related to finding probability distributions. Next up is the Maximum
Entropy Markov Model (MEMM), a discriminative model that extends a standard
maximum entropy classifier by assuming that the unknown values to be learnt are
connected in a Markov chain rather than being conditionally independent of each
other. MEMMs find applications in information extraction, segmentation and in
natural language processing, specifically in part-of-speech tagging.

This is followed by an overview of some methods namely Generalised Iterative
Scaling and an improved iterative version of it, which find use in solving for the
training objectives of many problems which use maximum likelihood estimation
on the training data to get the parameters.

Then comes the concept of swarm intelligence, which is inspired by the action
of insects such as ants. Finally we briefly discuss Boltzmann machines. They
were one of the first examples of a neural network capable of learning internal
representations, and are able to represent and (given sufficient time) solve difficult
combinatoric problems.

19

3.1 Hidden Markov Model

The Hidden Markov model is a stochastic model in which the system being mod-
elled is assumed to be a Markov process with unobserved (hidden) states. A key
aspect of the HMM is its Markov property which is described in brief below along
with other background definitions required.

3.1.1 Stochastic Process

Definition 1. Stochastic Process: A stochastic process is a collection of random
variables often used to represent the evolution of some random value over time.

There is indeterminacy in a stochastic process. Even if we know the initial
conditions, the system can evolve in possibly many different ways.

3.1.2 Markov Property and Markov Modelling

Definition 2. Markov Property: A stochastic process has the Markov property if
the conditional probability distribution of future states of the process (conditional
on both past and present values) depends only upon the present state, not on the
sequence of events that preceded it. That is, the process is memoryless.

A Markov model is a stochastic model that follows the Markov property. Next
we present the HMM through the urn problem which eases the exposition. In a
further sub-section the formal description of the HMM is given.

3.1.3 The urn example

There are N urns, each containing balls of different colours mixed in known pro-
portions. An urn is chosen and a ball is taken out of it. The colour of the ball is
noted and the ball is replaced. The choice of the urn from which the nth ball will
be picked is determined by a random number and the urn from which the (n−1)th

ball was picked. Hence, the process becomes a Markov process.
The problem to be solved is the following: Given the ball colour sequence find

the underlying urn sequence. Here the urn sequence is unknown (hidden) from
us and hence the name Hidden Markov Model. The diagram1 below shows the
architecture of an example HMM. The quantities marked on the transition arrows
represent the transition probabilities.

1Source:http://en.wikipedia.org/wiki/Hidden_Markov_model

20

http://en.wikipedia.org/wiki/Hidden_Markov_model

Figure 3.1: An example Hidden Markov Model with three urns

3.1.4 Formal Description of the Hidden Markov Model

The hidden Markov model can be mathematically described as follows:

N = number of states
T = number of observations
θi=1...N = emission parameter for an observation associated with state i
φi=1...N,j=1...N = probability of transition from state i to state j
φi=1...N = N -dimensional vector, composed of φi,1...N ; must sum to 1
xt=1...T = state of observation at time t
yt=1...T = observation at time t
F (y|θ) = probability distribution of an observation, parametrized on θ
xt=2...T ∼ Categorical(φxt−1

)

yt=1...T ∼ F (θxt)

3.1.5 The Trellis Diagram

Given the set of states in the HMM, we can draw a linear representation of the state
transitions given an input sequence by repeating the set of states at every stage.
This gives us the trellis diagram. A sample trellis is shown in Figure 3.22. Each
level of the trellis contains all the possible states and transitions from each state
onto the states in the next level. Along with every transition, an observation is
emitted simultaneously (in the figure a time unit is crossed and observations vary
with time).

2Source: Prof. Pushpak Bhattacharyya’s lecture slides on HMM from the course CS 344 - Artifi-
cial Intelligence at IIT Bombay, spring 2013

21

Figure 3.2: An Example Trellis

3.1.6 Formulating the Part-of-Speech tagging problem using HMM

The POS tagging problem can be described as follows. We are given a sentence
which is a sequence of words. Each word has a POS tag which is unknown. The
task is to find the POS tags of each word and return the POS tag sequence corre-
sponding to the sentence. Here the POS tags constitute the hidden states. As in the
urn problem, we again assume that words (balls) are emitted by POS tags (urns), a
property called the lexical assumption. That is, the probability of seeing a particu-
lar word depends only on the POS tag previously seen. Also, as was the case in the
urn problem, the probability of a word having a particular POS tag is dependent
only on the POS tag of the previous word (urn to urn probability). Having mod-
elled the problem as given above, we need to explain how the transition tables are
constructed. The transition probabilities come from data. This is a data-driven ap-
proach to POS tagging, and using data on sentences which are already POS tagged
we construct the transition tables. Given this formulation, we next present an al-
gorithm which given an input sentence and the transition tables outputs the most
probable POS tag sequence.

3.1.7 The Viterbi Algorithm

The Viterbi algorithm[13] is a dynamic programming algorithm for finding the
most likely sequence of hidden states that result in the sequence of observed states.
Here the hidden states are the POS tags (or urns in the example) and the observed
sequence is the word sequence (ball colours).

The state transition probabilities are known (in practice these are estimated
from labelled data) and so are the probabilities of emitting each word in the sen-
tence given the POS tag of the previous word. We start at the start of the input
sentence. We define two additional POS tags ˆ and $ to represent the tag for the
start of the sentence and the terminal character at the end of the sentence (full stop,
exclamation mark and question mark).

A straight-forward algorithm to find the most probable POS tag sequence (hid-
den sequence) would be to just try all possibilities starting from the beginning of

22

the sentence. Here, our problem has more structure. We will exploit the Markov
assumption we made earlier to get a much more efficient algorithm which is pre-
cisely the Viterbi algorithm.

In the trellis for POS tagging problem the following are the major changes to
be done.

• The observations (words) do not vary with time. Instead they vary with the
position of the pointer in the input sentence.

• The states are the POS tags. The state transition probabilities are pre-computed
using a POS-tagged corpus.

Next, we observe that due to the Markov assumption, once we have traversed
a part of the sentence, the transition probabilities do not depend on the entire sen-
tence seen so far. They depend only on the previous POS tag. This crucial obser-
vation gives rise to the Viterbi algorithm:

Suppose we are given a HMM with S possible POS tags (states), initial prob-
abilities πi of being in state i, the transition probabilities P (sj |si) of going from
state i to j and the emission probabilities P (xt|si) of emitting xt from the state si.
If the input sentence is x1, x2, . . . , xT then the most probable state sequence that
produces the sentence y1, y2, . . . , yT is given by the recurrence relations

V1,k = P (y1|sk)πk (3.1)

Vt,k = P (yt|sk)maxsx∈S(P (sk|sx).Vt−1,x) (3.2)

where Vt,k is the probability of the most probable state sequence which emitted
the first t words that has k as the final state. The Viterbi path (most likely state
sequence) can be remembered by storing back pointers which contain the state
sx which was chosen in the second equation. The complexity of the algorithm is
O(|T ||S2|) where T is the set of words, the input sequence and S is the set of POS
tags.

3.1.8 Pseudocode

Pseudocode for the Viterbi algorithm is given below:

Given
Set of states: Array S
Start state: s0
End state: se
Symbol sequence: Array w
State transition probabilities: Matrix a
Symbol emission probabilities: Matrix b
alpha: Matrix alpha

All indices in arrays start on 1 in this pseudocode

23

Returns
Total probability: p

Initialisation F1
foreach s in S do

alpha [1][s] := a[s0][s]*b[s][w[1]]
done

Induction F2
for i := 1 to length(w)-1 do

foreach s in S do
foreach s’ in S do

alpha[i+1][s] += alpha[i][s’]*a[s’][s]
done
alpha[i+1][s] *= b[s][w[i+1]]

done
done

Termination F3
foreach s in S do

p += alpha[length(w)][s]*a[s][se]
done

return p

In the next section, we present the concept of Maximum Entropy and see how
it is applied to NLP tasks via an example for Statistical Machine Learning.

3.2 Maximum Entropy Approach

”Gain in entropy always means loss of information, and nothing more”.

- G.N. Lewis (1930)

3.2.1 Entropy - Thermodynamic and Information

In statistical mechanics, entropy is of the form:

S = −k
∑
i
pi log pi,

where pi is the probability of the microstate i taken from an equilibrium ensemble.
The defining expression for entropy in Shannon’s theory of information is of the
form:

24

H = −
∑
i
pi log pi,

where pi is the probability of the message mi taken from the message space M .
Mathematically H may also be seen as an average information, taken over the
message space, because when a certain message occurs with probability pi, the in-
formation − log pi will be obtained.

A connection can be made between the two. If the probabilities in question
are the thermodynamic probabilities pi, the (reduced) Gibbs entropy σ can then be
seen as simply the amount of Shannon information needed to define the detailed
microscopic state of the system, given its macroscopic description. To be more
concrete, in the discrete case using base two logarithms, the reduced Gibbs entropy
is equal to the minimum number of yes/no questions needed to be answered in
order to fully specify the microstate, given that we know the macrostate.

3.2.2 The Maximum Entropy Model

Language modelling is the attempt to characterize, capture and exploit regularities
in natural language. In statistical language modelling, large amounts of text are
used to automatically determine the models parameters, in a process known as
training. While building models, we may use each knowledge source separately
and then combine. Under the Maximum Entropy approach, one does not construct
separate models. Instead, we build a single, combined model, which attempts to
capture all the information provided by the various knowledge sources. Each such
knowledge source gives rise to a set of constraints, to be imposed on the combined
model. The intersection of all the constraints, if not empty, contains a (possibly
infinite) set of probability functions, which are all consistent with the knowledge
sources. Once the desired knowledge sources have been incorporated, no other
features of the data are assumed about the source. Instead, the worst (flattest)
of the remaining possibilities is chosen. Let us illustrate these ideas with a simple
example.

3.2.3 Application to Statistical Machine Learning

Suppose we wish to predict the next word in a document[11], given the history,
i.e., what has been read so far. Assume we wish to estimate P (BANK|h), namely
the probability of the word BANK given the documents history. One estimate
may be provided by a conventional bigram. The bigram would partition the event
space (h,w) based on the last word of the history. Consider one such equivalence
class, say, the one where the history ends in THE. The bigram assigns the same
probability estimate to all events in that class:

PBIGRAM(BANK|THE) = K{THE,BANK}

That estimate is derived from the distribution of the training data in that class.
Specifically, it is derived as:

25

K{THE,BANK} = C(THE,BANK)
C(THE)

Another estimate may be provided by a particular trigger pair, say (LOAN7→BANK).
Assume we want to capture the dependency of BANK on whether or not LOAN oc-
curred before it in the same document. Thus a different partition of the event space
will be added. Similarly to the bigram case, consider now one such equivalence
class, say, the one where LOAN did occur in the history. The trigger component
assigns the same probability estimate to all events in that class:

PLOAN7→BANK(BANK|LOAN∈ h) = K{BANK|LOAN∈h}

That estimate is derived from the distribution of the training data in that class.
Specifically, it is derived as:

K{BANK|LOAN∈h} = C(BANK,LOAN∈h)
C(LOAN∈h)

These estimates are clearly mutually inconsistent. How can they be reconciled?
Linear interpolation solves this problem by averaging the two answers. The back-
off method solves it by choosing one of them. The Maximum Entropy approach,
on the other hand, does away with the inconsistency by relaxing the conditions im-
posed by the component sources.

Consider the bigram. Under Maximum Entropy, we no longer insist thatP (BANK|h)
always have the same value K{THE,BANK} whenever the history ends in THE. In-
stead, we acknowledge that the history may have other features that affect the
probability of BANK. Rather, we only require that, in the combined estimate,
P (BANK|h) be equal to K{THE,BANK} on average in the training data.

E
h ends in THE

[PCOMBINED(BANK|h)] = K{THE,BANK}

where E stands for an expectation, or average. The constraint expressed by this
equation is much weaker. There are many different functions PCOMBINED that
would satisfy it. Similarly,

E
LOAN∈h

[PCOMBINED(BANK|h)] = K{BANK|LOAN∈h}

In general, we can define any subset S of the event space, and any desired expec-
tation K, and impose the constraint:∑

(h,w)∈S
[P (h,w)] = K

The subset S can be specified by an index function, also called selector function,
fS , an indicator for the belongingness of the pair (h,w) in S. So, we have∑

(h,w)

[P (h,w)fS(h,w)] = K

We need not restrict ourselves to index functions. Any real-valued function f(h,w)
can be used. We call f(h,w) a constraint function, and the associatedK the desired
expectation. So, we have

〈f, P 〉 = K

26

3.3 The ME Principle and a Solution

Now, we give a general description of the Maximum Entropy model and its solu-
tion. The Maximum Entropy (ME) Principle can be stated as follows[6]

1. Reformulate the different information sources as constraints to be satisfied
by the target (combined) estimate.

2. Among all probability distributions that satisfy these constraints, choose the
one that has the highest entropy.

Given a general event space {x}, to derive a combined probability function P (x),
each constraint j is associated with a constraint function fj(x) and a desired ex-
pectation Kj . The constraint is then written as:

EP fj =
∑
x
P (x)fj(x) = Kj

Given consistent constraints, a unique ME solution is guaranteed to exist, and to
be of the form:

P (x) = Π
j
µ
fj(x)
j

where the µjs are some unknown constants, to be found.

3.3.1 Proof for the ME Formulation

Here, we give a proof for the unique ME solution that we proposed in the previous
subsection. Suppose there are N different points in the event space, and we assign
a probability pi to each. Then, the objective to be maximised is the entropy, given

by H = −
N∑
i=1

pi ln pi. The constraints are:

∑
i

pi = 1∑
i

pifj(xi) = Kj ∀j ∈ {1, 2, ...,m}

27

So, we introduce Lagrange multipliers and now maximise

F = −
N∑
i=1

pi ln pi + λ(
N∑
i=1

pi − 1) +
m∑
j=1

λj(
N∑
i=1

pifj(xi)−Kj)

∂F

∂pi
= − ln pi − 1 + λ+

m∑
j=1

λjfj(xi) = 0

ln pi = λ− 1 +

m∑
j=1

λjfj(xi)

pi = eλ−1e

m∑
j=1

λjfj(xi)

pi = eλ−1
m∏
j=1

eλjfj(xi)

pi = a
m∏
j=1

µ
fj(xi)
j

where a = eλ−1 is a normalization constant and eλj = µj

3.3.2 Generalized Iterative Scaling

To search the exponential family defined by pi =
∏m
j=1 µ

fj(xi)
j for the µis that will

make P (x) satisfy all the constraints, an iterative algorithm exists, which is guar-
anteed to converge to the solution. GIS[5] starts with some arbitrary µ(0)

i values,
which define the initial probability estimate:

P 0(x) =
∏
j
µ

(0)
j

fj(x)

Each iteration creates a new estimate, which is improved in the sense that it matches
the constraints better than its predecessor. Each iteration (say k) consists of the
following steps:

1. Compute the expectations of all the fj’s under the current estimate function.
Namely, compute EP (k)fj =

∑
x
P (k)(x)fj(x)

2. Compare the actual values EP (k)fj’s to the desired values Kjs, and update
the µj’s according to the following formula:

µ
(k+1)
j = µ

(k)
j

Kj
E
P (k)fj

3. Define the next estimate function based on the new µjs:

28

P (k+1)(x) =
∏
j
µ

(k+1)
j

fj(x)

Iterating is continued until convergence or near-convergence.

3.4 Improved Iterative Scaling

Iterative Scaling and its variants are all based on the central idea of the Gradient
Descent algorithm for optimizing convex training objectives. It is presented here
using a model which occurs at many places in a maximum entropy approach to
natural language processing.

3.4.1 The Model in parametric form

The problem we consider is a language modelling problem[9], which is to define
the distribution P (y|x), where y and x are sequences. For eg, y can be the POS tag
sequence and x the input sequence. Henceforth the boldface indicating that x is a
sequence will be dropped unless the context demands further elucidation.

Given just the above information, the maximum entropy approach maximises
the entropy of the model giving us a model of the following form.

PΛ(y|x) =
1

ZΛ(x)
exp

(
n∑
i=1

λifi(x, y)

)
. (3.3)

where

• fi(x, y) is a binary-valued function, called a feature of (x,y), associated with
the model. The model given above has n features.

• λi is a real-valued weight attached with fi whose absolute value measures
the ’importance’ of the feature fi. Λ is the vector of the weights: Λ =
{λ1, λ2, . . . , λn}.

• ZΛ(x) is the normalizing factor which ensures that PΛ is a probability dis-
tribution.

ZΛ(x) =
∑
y

exp

(
n∑
i=1

λifi(x, y)

)

3.4.2 Maximum Likelihood

The next thing to do would be to train the model, i.e find the parameters λi so as to
maximize some objective over the training data. Here, we choose to maximize the
likelihood of the training data. The likelihood is computed by assuming that the

29

model is the correct underlying distribution and hence is a function of the parame-
ters of the model. The likelihood of the training data is expressed as follows (N is
the number of training instances):

M(Λ) =
N∏
i=1

P (xi, yi)

=
N∏
i=1

PΛ(yi|xi)P (xi)

Now, we note that log(x) is a one-to-one map for x > 0. Therefore the value of
x which maximizes f(x) is the same as that which maximizes log(f(x)). Hence-
forth we work with the logarithm of the likelihood expression as it is mathemati-
cally easier to work with. The log-likelihood expression denoted by L(Λ) is given
below:

L(Λ) = log(M(Λ))

=
N∑
i=1

log (PΛ(yi|xi)) + C

where C is independent of Λ and is hence treated as a constant. It is dropped from
the expression henceforth as it does not affect the maximization problem.
Now, we express the log-likelihood expression in terms of the empirical probability
distribution p̃(x, y) obtained from the training data as follows:

p̃(x, y) =
c(x, y)∑
x,y c(x, y)

where c(x, y) is the number of times the instance (x, y) occurs in the training data.
The log-likelihood expression becomes the following:

Lp̃(Λ) =
∑
x,y

log
(
PΛ(y|x)c(x,y)

)
=

∑
x,y

p̃(x, y)log (PΛ(y|x))

We ignore
∑

x,y c(x, y) as it is constant for a given training set (= N).

30

3.4.3 The objective to optimize

Hence we arrive the objective to be maximized. The maximum likelihood problem
is to discover Λ∗ ≡ argmaxΛLp̃(Λ) where

Lp̃(Λ) =
∑
x,y

p̃(x, y)log (PΛ(y|x))

=
∑
x,y

p̃(x, y)
∑
i

λifi(x, y)−
∑
x,y

p̃(x, y)log

(∑
y

exp

(
n∑
i=1

λifi(x, y)

))

=
∑
x,y

p̃(x, y)
∑
i

λifi(x, y)−
∑
x

p̃(x)log(
∑
y

exp

(
n∑
i=1

λifi(x, y)

)
)

3.4.4 Deriving the iterative step

Suppose we have a model with some arbitrary set of parameters Λ = {λ1, λ2, . . . , λn}.
We would like to find a new set of parameters Λ+∆ = {λ1 +δ1, λ2 +δ2, . . . , λn+
δn} which yield a model of higher log-likelihood. The change in log-likelihood is

Lp̃(Λ + ∆)− Lp̃(Λ) =
∑
x,y

p̃(x, y)logP(Λ+∆)(y|x)−
∑
x,y

p̃(x, y)logPΛ(y|x)

=
∑
x,y

p̃(x, y)
∑
i

δifi(x, y)−
∑
x

p̃(x)log

(
Z(Λ+∆)(x)

Z(Λ)(x)

)
Now, we make use of the inequality −log(α) ≥ 1 − α to establish a lower

bound on the above change in likelihood expression.

Lp̃(Λ + ∆)− Lp̃(Λ) ≥
∑
x,y

p̃(x, y)
∑
i

δifi(x, y) + 1−
∑
x

p̃(x)
Z(Λ+∆)(x)

Z(Λ)(x)

=
∑
x,y

p̃(x, y)
∑
i

δifi(x, y) + 1−
∑
x

p̃(x)

∑
y exp (

∑
i(λi + δi)fi(x, y))∑

y exp (
∑

i λifi(x, y))

=
∑
x,y

p̃(x, y)
∑
i

δifi(x, y) + 1−
∑
x

p̃(x)
∑
y

((
exp(

∑
i λifi(x, y)

ZΛ(x)

)
exp

(∑
i

δifi(x, y)

))

=
∑
x,y

p̃(x, y)
∑
i

δifi(x, y) + 1−
∑
x

p̃(x)
∑
y

PΛ(y|x)exp

(∑
i

δifi(x, y)

)
= A(∆|Λ)

Now we know that is we can find a ∆ such that A(∆|Λ) > 0 then we have a
improvement in the likelihood. Hence, we try to maximize A(∆|Λ) with respect
to each δi. Unfortunately the derivative of A(∆|Λ) with respect to δi yields an
equation containing all of {δ1, δ2. . . . , δn} and hence the constraint equations for
δi are coupled.

31

To get around this, we first observe that the coupling is due to the summation
of the δis present inside the exponentiation function. We consider a counterpart
expression with the summation placed outside the exponentiation and compare the
two expressions. We find that we can indeed establish an inequality using an im-
portant property called the Jensen’s inequality. First, we define the quantity,

f#(x, y) =
∑
i

fi(x, y)

If fi are binary-valued then f#(x, y) just gives the total number of features which
are non-zero (applicable) at the point (x,y). We rewriteA(∆|Λ) in terms of f#(x, y)
as follows:

A(∆|Λ) =
∑
x,y

p̃(x, y)
∑
i

δifi(x, y)+1−
∑
x

p̃(x)
∑
y

PΛ(y|x)exp

(
f#(x, y)

∑
i

δifi(x, y)

f#(x, y)

)

Now, we note that fi(x,y)
f#(x,y)

is a p.d.f. Jensen’s inequality states that for a p.d.f,
p(x),

exp

(∑
x

p(x)q(x)

)
≤
∑
x

exp(p(x)q(x))

Now, using Jensen’s inequality, we get,

A(∆|Λ) ≥
∑
x,y

p̃(x, y)
∑
i

δifi(x, y) + 1−
∑
x

p̃(x)
∑
y

PΛ(y|x)
∑
i

(
fi(x, y)

f#(x, y)

)
exp(δif#(x, y))

= B(∆|Λ)

where B(∆|Λ) is a new lower-bound on the change in likelihood. B(∆|Λ) can be
maximized easily because there is no coupling of variables in its derivative. The
derivative of B(∆|Λ) with respect to δi is,

∂B(∆)

∂δi
=
∑
x,y

p̃(x, y)fi(x, y)−
∑
x

p̃(x)
∑
y

PΛ(y|x)fi(x, y)exp(δif
#(x, y))

Notice that in the expression for ∂B(∆)
∂δi

δi appears alone without the other parame-
ters. Therefore, we can solve for each δi individually. The final IIS algorithm is as
follows,

• Start with some arbitrary values for λis.

• Repeat until convergence

– Solve for ∂B(∆)
∂δi

= 0 for δi.

– Set λi = λi + δi

for each i.

32

3.5 Swarm Intelligence

Swarm Intelligence (SI)[10] is a relatively new paradigm being applied in a host of
research settings to improve the management and control of large numbers of in-
teracting entities such as communication, computer and sensor networks, satellite
constellations and more. Attempts to take advantage of this paradigm and mimic
the behaviour of insect swarms however often lead to many different implementa-
tions of SI. Here, we provide a set of general principles for SI research and devel-
opment. A precise definition of self-organized behaviour is described and provides
the basis for a more axiomatic and logical approach to research and development as
opposed to the more prevalent ad hoc approach in using SI concepts. The concept
of Pareto optimality is utilized to capture the notions of efficiency and adaptability.

3.5.1 Foundations

The use of swarm intelligence principles makes it possible to control and manage
complex systems of interacting entities even though the interactions between and
among the entities is minimal.

As an example, consider how ants actually solve shortest path problems. Their
motivation for solving these problems stems from their need to find sources of
food. Many ants set out in search of a food source by apparently randomly choos-
ing several different paths. Along the way they leave traces of pheromone. Once
ants find a food source, they retrace their path back to their colony by following
their scent back to their point of origin. Since many ants go out from their colony
in search of food, the ants that return first are presumably those that have found
the food source closest to the colony or at least have found a source that is in some
sense more accessible. In this way, an ant colony can identify the shortest or best
path to the food source.

The cleverness and simplicity of this scheme is highlighted when this process
is examined from what one could conceive of as the ants perspective - they simply
follow the path with the strongest scent (or so it seems). The shortest path will
have the strongest scent because less time has elapsed between when the ants set
out in search of food and when they arrive back at the colony, hence there is less
time for the pheromone to evaporate. This leads more ants to go along this path
further strengthening the pheromone trail and thereby reinforcing the shortest path
to the food source and so exhibits a form of reinforcement learning.

But this simple method of reinforcement or positive feedback also exhibits im-
portant characteristics of efficient group behaviour. If, for instance, the shortest
path is somehow obstructed, then the second best shortest path will, at some later
point in time, have the strongest pheromone, hence will induce ants to traverse it
thereby strengthening this alternate path. Thus, the decay in the pheromone level

33

leads to redundancy, robustness and adaptivity, i.e., what some describe as emer-
gent behaviour.

Efficiency via Pareto Optimality
Optimization problems are ubiquitous and even social insects must face them. Cer-
tainly, the efficient allocation of resources present problems where some goal or
objective must be maintained or achieved. Such goals or objectives are often math-
ematically modelled using objective functions, functions of decision variables or
parameters that produce a scalar value that must be either minimized or maximized.
The challenge presented in these often difficult problems is to find the values of
those parameters that either minimize or maximize, i.e., optimize, the objective
function value subject to some constraints on the decision variables.

In multi-objective optimization problems (MOPs) system efficiency in a math-
ematical sense is often based on the definition of Pareto optimality a well es-
tablished way of characterizing a set of optimal solutions when several objective
functions are involved. Each operating point or vector of decision variables (oper-
ational parameters) produces several objective function values corresponding to a
single point in objective function space (this implies a vector of objective function
values). A Pareto optimum corresponds to a point in objective function space with
the property that when it is compared to any other feasible point in objective func-
tion space, at least one objective function value (vector component) is superior to
the corresponding objective function value (vector component) of this other point.
Pareto optima therefore constitute a special subset of points in objective function
space that lie along what is referred to as the Pareto optimal frontier the set of
points that together dominate (are superior to) all other points in objective function
space.

Figure 3.3: The Pareto Optimal frontier is the set of hollow points. Operational de-
cisions must be restricted along this set if operational efficiency is to be maintained

Determining several Pareto optima can be quite valuable for enhancing the
survival value of a species (or managing a complex system) because it enables
adaptive behaviour. Thus, if in an ant colony a path to a food source becomes con-
gested, then other routes must be utilized. Although the distances to food sources
are generally minimized as is the level of congestion, these often conflicting objec-

34

tives can be efficiently traded off when the shortest distance is sacrificed to lessen
the level of congestion.

The Measure of Pareto Optima: A rather intuitive yet surprisingly little known
aspect of Pareto optima is its measure. This measure is based on the size of the
set of points in objective function space that are dominated by the Pareto optimal
frontier - in essence a Lebesgue measure or hypervolume.

Figure 3.4: The Pareto hypervolume

3.5.2 Example Algorithms and Applications

• Ant colony optimization
A class of optimization algorithms modelled on the actions of an ant colony,
ACO is a probabilistic technique useful in problems that deal with finding
better paths through graphs. Artificial ’ants’ -simulation agents, locate opti-
mal solutions by moving through a parameter space representing all possible
solutions. Natural ants lay down pheromones directing each other to re-
sources while exploring their environment. The simulated ’ants’ similarly
record their positions and the quality of their solutions, so that in later simu-
lation iterations more ants locate better solutions.

• Artificial bee colony algorithm
Artificial bee colony algorithm (ABC) is a meta-heuristic algorithm that
simulates the foraging behaviour of honey bees. The algorithm has three
phases: employed bee, onlooker bee and scout bee. In the employed bee and
the onlooker bee phases, bees exploit the sources by local searches in the
neighbourhood of the solutions selected based on deterministic selection in
the employed bee phase and the probabilistic selection in the onlooker bee
phase. In the scout bee phase which is an analogy of abandoning exhausted
food sources in the foraging process, solutions that are not beneficial any
more for search progress are abandoned, and new solutions are inserted in-
stead of them to explore new regions in the search space. The algorithm has
a well-balanced exploration and exploitation ability.

35

• Particle swarm optimization
PSO is a global optimization algorithm for dealing with problems in which
a best solution can be represented as a point or surface in an n-dimensional
space. Hypotheses are plotted in this space and seeded with an initial veloc-
ity, as well as a communication channel between the particles. Particles then
move through the solution space, and are evaluated according to some fitness
criterion after each time-step. Over time, particles are accelerated towards
those particles within their communication grouping which have better fit-
ness values. The main advantage of such an approach over other global min-
imization strategies such as simulated annealing is that the large number of
members that make up the particle swarm make the technique impressively
resilient to the problem of local minima.

3.5.3 Case Study: Ant Colony Optimization applied to the NP-hard
Travelling Salesman Problem

Travelling salesman problem (TSP) consists of finding the shortest route in com-
plete weighted graph G with n nodes and n(n-1) edges, so that the start node and
the end node are identical and all other nodes in this tour are visited exactly once.
We apply the Ant Colony[12] heuristic to obtain an approximate solution to the
problem. We use virtual ants to traverse the graph and discover paths for us. Their
movement depends on the amount of pheromone on the graph edges. We assume
the existence of ant’s internal memory. In symbols, what we have is:

• Complete weighted graph G = (N,A)

• N = set of nodes representing the cities

• A = set of arcs

• Each arc (i, j) in A is assigned a value (length) dij , which is the distance
between cities i and j.

Tour Construction
τij refers to the desirability of visiting city j directly after city i. Heuristic infor-
mation is chosen as ηij = 1

dij
.

We apply the following constructive procedure to each ant:

1. Choose, according to some criterion, a start city at which the ant is posi-
tioned;

2. Use pheromone and heuristic values to probabilistically construct a tour by
iteratively adding cities that the ant has not visited yet, until all cities have
been visited;

3. Go back to the initial city;

36

4. After all ants have completed their tour, they may deposit pheromone on the
tours they have followed.

Continue for a fixed number of iterations or till the pheromone distribution be-
comes almost constant.

Ant System
The Ant System (proposed in 1991) uses the following heuristics and formulae for
probability propagation

• Initialize the pheromone trails with a value slightly higher than the expected
amount of pheromone deposited by the ants in one iteration; a rough estimate
of this value can be obtained by setting

τij = τ0 = m
Cnn

where m is the number of ants, and Cnn is the length of a tour generated by
the nearest-neighbour heuristic.

• In AS, these m artificial ants concurrently build a tour of the TSP.

• Initially, put ants on randomly chosen cities. At each construction step, ant
k applies a probabilistic action choice rule, called random proportional rule,
to decide which city to visit next.

pkij = ταijη
β
ij/

∑
l∈Nk

i

ταil η
β
il, if j ∈ Nk

i

• Each ant k maintains a memoryMk which contains the cities already visited,
in the order they were visited. This memory is used to define the feasible
neighbourhood Nk

i in the construction rule.

• We can adopt any of the following two: Parallel implementation: at each
construction step all ants move from current city to next one; Sequential im-
plementation: ant builds complete tour before next one starts to build another

37

Update of Pheromone Trails

• Forget bad decisions:

τij ← (1− ρ)τij ∀i, j, where ρ ∈ {0, 1}

• So,if an arc is not chosen by the ants, its pheromone value decreases expo-
nentially

• ∆τkij is the amount of pheromone ant k deposits on the arcs it has visited and
Ck is the length of tour T k built by the kth ant. Then, they are related as
follows:

∆τkij = 1/Ck, if arc (i, j) belongs to tour T k; 0 otherwise

• The update then happens as follows:

τij ← τij +
m∑
k=1

∆τkij , ∀(i, j)

Computational Experiments For experiment, the problem of 32 cities in Slo-
vakia has been solved using the ACO. The optimal solution to that problem has a
length of route 1453km. Parameters are α = 1, β = 5. The number of iterations
was set to 1000.

With m = 1000, the result was the tour with length 1621 km in 34th iteration
(difference 11.56% from optimal route).

Figure 3.5: Search process for m=1000 ants

With m = 5000, algorithm ACO finds the tour with length 1532km in 21st

iteration (difference 5.44% from optimal route).

38

Figure 3.6: Search process for m=5000 ants

3.6 Boltzmann Machines

One of the first examples of a neural network capable of learning internal represen-
tations, Boltzmann machines3 are able to represent and (given sufficient time) solve
difficult combinatoric problems. They are named after the Boltzmann distribution
in statistical mechanics, which is used in their sampling function.

Figure 3.7: Graphical representation for a Boltzmann machine with a few labelled
weights

3.6.1 Structure

A Boltzmann machine, is a network of stochastic units with an energy defined for
the network. The global energy E, in a Boltzmann machine is:

E = −(
∑

i<j wij si sj +
∑

i θi si)

3Content and figure from http://en.wikipedia.org/wiki/Boltzmann_machine

39

http://en.wikipedia.org/wiki/Boltzmann_machine

where wij is the connection strength between unit j and unit i; si ∈ {0, 1} is the
state of unit i; θi is the bias of unit i in the global energy function.
The connections in a Boltzmann machine have two restrictions:

• wii = 0 ∀i. (No unit has a connection with itself.)

• wij = wji ∀i, j. (All connections are symmetric.)

3.6.2 Probability of a state

The difference in the global energy that results from a single unit i being 0(off)
versus 1(on), written ∆Ei, is given by:

∆Ei =
∑

j wij sj + θi

This can be expressed as the difference of energies of two states:

∆Ei = Ei=off − Ei=on

We then substitute the energy of each state with its relative probability according
to the Boltzmann Factor (the property of a Boltzmann distribution that the energy
of a state is proportional to the negative log probability of that state):

∆Ei = −kB T ln(pi=off)− (−kB T ln(pi=on))

where kB is Boltzmann’s constant and is absorbed into the artificial notion of tem-
perature T . We then rearrange terms and consider that the probabilities of the unit
being on and off must sum to one:

∆Ei
T

= ln(pi=on)− ln(pi=off)

∆Ei
T

= ln(pi=on)− ln(1− pi=on)

∆Ei
T

= ln

(
pi=on

1− pi=on

)
−∆Ei

T
= ln

(
1− pi=on

pi=on

)
−∆Ei

T
= ln

(
1

pi=on
− 1

)
exp

(
−∆Ei

T

)
=

1

pi=on
− 1

We can now solve for pi=on, the probability that the ith unit is on.

pi=on = 1

1+exp(−∆Ei
T

)

where the scalar T is referred to as the temperature of the system. This relation is
the source of the logistic function found in probability expressions in variants of
the Boltzmann machine.

40

3.6.3 Equilibrium State

The network is run by repeatedly choosing a unit and setting its state according
to the above formula. After running for long enough at a certain temperature, the
probability of a global state of the network will depend only upon that global state’s
energy, according to a Boltzmann distribution. This means that log-probabilities of
global states become linear in their energies. This relationship is true when the ma-
chine is at thermal equilibrium, meaning that the probability distribution of global
states has converged. If we start running the network from a high temperature, and
gradually decrease it until we reach a thermal equilibrium at a low temperature, we
may converge to a distribution where the energy level fluctuates around the global
minimum. This process is called simulated annealing.

41

