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Abstract

Neural Machine Translation (NMT) is a
new highly active approach for machine
translation, which has showed promising
results and due to its success it has at-
tracted many researchers in the field. In
this paper we investigate how NMT archi-
tecture changed over very short span of
time. Starting with basic encoder-decoder
architecture that suffered two problems,
poor performance with longer sentences
and out-of-vocabulary (OOV) problem.
Attention based NMT performs better
with longer sentences but it still faces the
OOV problem. To deal with OOV prob-
lem attention based NMT along with sub-
word segmentation called Subword NMT
are being used. With word segmenta-
tions NMT systems are able to cover larger
range of vocabulary. Later factored NMT
were proposed which shows improvement
in performance, but requires linguistic fea-
tures annotated data, which may not be
available easily for most of the language
pairs.

1 Introduction

Neural machine translation is a new approach
to machine translation, recently proposed by
(Kalchbrenner and Blunsom, 2013), (Sutskever
et al., 2014) and (Cho et al., 2014a). From the
probabilistic point of view translation is finding
the best possible target sentence that maximizes
the conditional probability of y given x i.e.
p(y|x) (Bahdanau et al., 2014). Phrase based
Statistical Machine Translation (PBSMT) (Koehn
et al., 2003) solves the problem of machine
translation by training sub-components separately
like language model and translation model. In

contrast to PBSMT in Neural Machine Translation
an end-end to single large neural network model
is trained to achieve the same goal.

Basic idea behind NMT is to encode a vari-
able length sequence of words into a fixed
length vector that can summarize the whole
sentence. Then decode this encoded vector in
target language to achieve the translation of
source sentence. Whole encoder-decoder model
is trained jointly to maximize the conditional
probability P(y|x), where y is target sentence that
NMT model generate and x is source sentence.

2 Neural Machine Translation

NMT models consists of two parts called encoder
and decoder. Encoder is responsible for gen-
erating a real vector representation of sentence
called summary vector or context vector that
captures the necessary features of sentence.
Ideally context vector should be able to represent
all the information present in source sentence
in real vector representation. Decoder process
this context vector to generate target language
sentence word by word, such that all the meaning
present in source sentence is transferred in it.

Since the source sentences and target sen-
tences can be of variable sizes, we use Recurrent
Neural Networks (RNNs) to process them. Prac-
tically Long Short Term Memory (LSTM) and
Gated Recurrent Unit (GRU) variants of RNN are
used.

2.1 Long Short Term Memory

RNN consumes sentence word by word and up-
date the hidden state on processing each word.
Simple RNN use tanh or sigmoid as activation
function, which fail to capture various long term



Figure 1: Long Short Term Memory cell architec-
ture. From source1

dependencies in sentences as it gives more em-
phasis on lates words seen. Also this suffers
from problem of vanishing gradient and explod-
ing gradient while training. LSTM (Hochreiter
and Schmidhuber, 1997) does not store every in-
formation of sentence in state, rather it learns to
selectively forget and remember. This is achieved
by gating mechanism. It has three gates, and
a memory cell called candidate memory. Gates
helps selectively forget and remember information
in sentence and contents are stored in memory cell.
Structure of LSTM network is shown in figure 1.
Components of LSTM layers are

1. Forget Gate (ft): It decides which informa-
tion to forget from previous memory cell.

2. Input Gate (it): It decides which informa-
tion to pass to remember by cell.

3. Candidate Memory (Ćt): It records the in-
formation about current input.

4. Output Gate (ot): Cell memory is squashed
to lie between -1 and 1 using tanh function
for the computation of current hidden state.
Output gate controls what to output in hidden
state at this point.

5. Cell Memory (Ct): It is actual cell memory
updated after adding necessary information
and removing unnecessary information.

1http://colah.github.io/posts/
2015-08-Understanding-LSTMs/

Figure 2: Encoder-Decoder Model for NMT. From
source2

So when an input xt is given as input at time t
hidden state of RNN is computated as

ht = f(ht−1, xt) (1)

For LSTM non-linear function f(ht−1, xt) is com-
puted as follow

ft = σ(Wfht−1 + Ufxt + bf ) (2)

it = σ(Wiht−1 + Uixt + bi) (3)

Ćt = σ(WCht−1 + UCxt + bC) (4)

Ct = ftCt−1 + itĆt (5)

ot = σ(Woht−1 + Uoxt + bo) (6)

ht = ottanh(Ct) (7)

2.2 Basic Encoder-Decoder model

This model can be divided into two parts Encoder
and Decoder as shown in figure 2, both are
implemented using RNNs. Encoder encodes
the variable length sentence into fixed length
vector called summary vector or context vec-
tor. Decoder takes this vector representation of
sentence and generates target language translation.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Encoder: Encoder is an RNN whose state is
updated each time it sees a word in sentence and
the last state of it summarizes whole sentence
which is called as summary vector hT . Processes
of encoding of a word is as follow

Step 1: Input word at any point of time while
encoding sentence, is input to the encoder as
one-hot vector wi.

Step 2: Now one-hot vector of input vector
wi is transformed to low-dimension continuous
space vector representation si. To do so, we can
use previous learned word embeddings E or train
them jointly. Word embedding matrix E ∈ Rd×V

contains as many coloumns as words in vocabu-
lary. Each ith column of word embedding matrix
represent continuous vector space representation
of ith word of vocabulary. So when as a product
of word embedding matrix and one-hot vector,
continuous space vector of corresponding word is
selected as shown in equation 8.

si = Ewi (8)

Step 3: In this step, RNNs hidden is updated to
take into account new word si seen in the sentence.

hi = f(si, hi−1) (9)

Where f is non-linear transformation function
of RNN depending on variant of RNN (Vanilla,
LSTM and GRU) used.

After processing last word of the sentence
(T-th word if sentence length is T), state hT that
is obtained by encoder is called summary vector
of sentence, which is a fixed dimensional vector
representing whole sentence.

Decoder: Decoder is also an RNN, that takes in-
put as summary vector, previous generated target
word and last hidden state of it. After processing
input, probability distribution over words in target
language vocabulary is obtained. Target words are
then sampled from this probability distribution.
Process of decoding is described below:

2https://devblogs.
nvidia.com/parallelforall/
introduction-neural-machine-translation-gpus-part-2/

Step 1: First internal state zi of decoder RNN is
calculated as

zi = f ′(hT , zi−1, ui−1) (10)

Where zi and zi−1 are current and previous
state of decoder, hT is summary vector, ui−1 is
previous generated target word. f ′ is non-linear
transformation function of RNN.

Step 2: Based on the current state of the de-
coder, we compute the compatibility score for
each word in vocabulary, later transform this score
into probability.

ek = wT
k zi (11)

p(wi = k|w1, w2, ..., wi−1, hT ) =
exp(ek)∑
j(exp(ej))

(12)
Here ek, wk are score and vector representa-
tion of k-th word in vocabulary. This score
is high if it aligns with decoder well else low.
p(wi = k|w1, w2, ..., wi−1, hT ) is the probability
of k-th word, for all k ∈ 1, 2, ..., V .

Step 3: From the probability distribution ob-
tained from step 2, we sample target word.
Decoder then again repeats steps 1 to step 3 until
an end-of-sentence is not encountered. Hence
a target sentence is generated corresponding to
provided input source sentence.

ek = wT
k zi (13)

p(wi = k|w1, w2, ..., wi−1, hT ) =
exp(ek)∑
j(exp(ej))

(14)
Here ek, wk are score and vector representation
of k-th word in vocabulary. This score is high
if it aligns with decoder well else low. p(wi =
k|w1, w2, ..., wi−1, hT ) is the probability of k-th
word, for all k ∈ 1, 2, ..., V .

2.3 Encoder-Decoder with Attention
Mechanism

In basic encoder-decoder model, encoder com-
presses the sentence into fixed length vector. This
summary vector contains the information of all the
words in sentence. But as the length of sentence

https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/
https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/
https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/


Figure 3: Attention based NMT architecture.
source1

it fails to encode it efficiently in fixed summary
vector, which degrades the performance of trans-
lation (Cho et al., 2014b). So in order to deal with
this problem (Bahdanau et al., 2014) proposed
soft-search model, that uses attention mechanism
in encoder-decoder model. Idea in this model is
to not represent sentence with fixed length vector
rather represent each word by a fixed length vector
called annotation vectors and while generating
each word in target language look for source sen-
tences which are more relevant in source sentence.

Only difference with basic encoder-decoder
is in encoder part, decoder part is same in both
the model. In basic model decoder takes encoded
summary vector as input, but in attention model
it takes context vector as input to generate target
sentence.

Context vector is the convex combination
of annotation vectors of words in source sentence.
It is calculated each time decoder generates a new
word, while in basic model summary vector used
to calculate only once. Convex coefficient used in
computation of context vector are called attention
weights. Architecture of attention based NMT
model is shown in figure 3. Annotation vectors:
Annotation vector for each word is calculated
by bi-directional RNN. Bidirectional RNN reads
sentence from both directions i.e. left-to-right
and right-to-left. State from left-to-right

−→
h i and

right-to-left
←−
h i is concatenated for each word,

this concatenated state is called annotation vector
hi.

1https://devblogs.
nvidia.com/parallelforall/
introduction-neural-machine-translation-gpus-part-3/

Attention Weights: Attention weights gives
soft-alignment, as these represent the probabilistic
alignment of how words in source language and
target language are aligned while generating target
words. These are calculated each time decoder
generate target word, and gives a probabilistic
measure of how much each word in source
language is important in the generation of current
target word. To compute attention weights, first
alignment score ei,j of each source word is
computed that measures how relevant j-th word
in source sentence is for i-th target word. This is
computed for all source words in the generation
of each target word by some alignment model a
i.e.

ei,j = a(zi−1, hj) ∀j ∈ 1, 2, ..., T , ∀i ∈ 1, 2, ..., T ′

(15)
where hj is the annotation vector of j-th source
word, T and T ′ are the lenghts of source and tar-
get sentences respectively and zi−1 is decoders last
state. Then these alignment scores are transformed
to probabilistic measure using softmax function.
These probabilistic measures are called attention
weights αij .

αij =
exp(ej)∑
j′ exp(ej′)

(16)

Since attention weights are probabilistic measures,
we compute context vector as expected annotation
vector by equation 17.

ci =

T∑
j=1

αijhj (17)

Here ci is the context vector obtained while gen-
erating i-th target word, T is the lenght of source
sentence, αij is attention weight of j-th annotation
vector and hj is j-th annotation vector.
Once context vector is computed we compute de-
coders next state as a non-linear function (as of
LSTM or GRU) of context vector ci, previous
target word ui−1 and decoders last state zi−1 as
shown in equation 18

zi = f(ci, ui−1, zi−1) (18)

After that we compute probability distribution
over target vocabulary and sample target word
in the same way as done basic encoder-decoder
model repeatedly till complete sentence is not gen-
erated.

https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/
https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/
https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/


3 Subword NMT

NMT systems are trained on a limited size
vocabulary, but test data can have different words
than those in vocabulary such words are called
unseen, rare or out-of-vocabulary words. Most of
the out-of-vocabulary words are named entities,
compound words and cognates (via morphologi-
cal transformation) (Sennrich et al., 2015).

Named entities can be copied to target lan-
guage translation if it shares the alphabets with
source language, else transliteration is required.
For Cognates and loan words character level
translation rules are sufficient. Translation of
compound words can be achieved by translating
its morphemes separately (Sennrich et al., 2015).

3.1 Byte-Pair Encoding
(Sennrich et al., 2015) proposed BPE based
word segmentation method. In this method
two vocabularies are maintained called training
vocabulary and symbol vocabulary. Words in
training vocabulary are represented as sequence
of characters, plus an end-of-word symbol. All
characters are added to symbol vocabulary. Then
using BPE technique the most frequent symbol
pair is identified, and all its occurrences are
merged, producing a new symbol that is added
to the vocabulary. This BPE step is repeated
until a set of merge operations have been learned.
Number of BPE merge operations in this method
is also a hyper parameter.

Byte-Pair Encoding (BPE)1 (Sennrich et al.,
2015) is originally a data compression technique
(Gage, 1994). Idea behind BPE is

“Find the most frequent pair of consecutive
two character codes in the text, and then substi-
tute an unused code for the occurrences of the
pair.” (Shibata et al., 1999)

Below example explains the BPE method:

Let the original text be
T0 = PQPQRSUQSUVPQSUPQR.

Most frequent pair in T0 is PQ, so we re-
place it by A. Modified Text is
T1 = AARSUQSUVASUAR.

1https://github.com/rsennrich/subword-nmt

Now most frequent pair in T1 is SU, so we
replace it by B. Modified Text is
T2 = AARBQBVABAR.

Now most frequent pair in T2 is AR, so we
replace it by C. Modified Text is
T3 = ACBQBVABC.

In T3 no pair is repeated so BPE algorithm
stops here. Using BPE algorithm text of length
|T0| = 18 is compressed to a text of length |T3| = 9.
Additional information that is required to decode
encoded text is list of encodings i.e. PQ→ A, SU
→ B and AR→ C. Since we perform BPE merge
operations on character level first, this performs
character level segmentation. As the number of
merge operations are increased frequent sequence
of characters and even full words are also encoded
as a single symbol. This a allows a trade-off
between the NMT model vocabulary size and the
length of training sequence.

If there will be much larger merge opera-
tions then almost every word will belong to
symbol vocabulary, that will prevent the sub-word
level segmentation of words. When using BPE
for sub-word segmentation, size of the sentences
is increased as sub-words are separated by special
symbols to allow decoding later. Larger the
sentence size, it becomes difficult for NMT to
learn well on them. So number of BPE merge
operations is an important hyper parameter that is
needed to be tuned properly before use.

4 Factored NMT

(Sennrich and Haddow, 2016) proposed an ap-
proach to incorporate linguistic features as input
with words in NMT. They idea behind putting lin-
guistic features is to examine if NMT system can
learn linguistic features from parallel corpora and
if this is not the case, then does it help to improve
NMT systems. Their results showed improvement
with linguistic features. Unlike in factored SMT
(Koehn and Hoang, 2007), here linguistic features
are used only at source side.

4.1 Linguistic Features in NMT

There are various linguistic features such as
lemma, POS tags, dependency parsing labels and
subword tags etc. which can be incorporated in



NMT systems at the source side very easily. How
these features are incorporated in NMT system is
described in detail in section 4.2. Following are
the key idea behind using some specific linguistic
features in NMT system.

1. Lemma: Providing lemmas as input features
can help to improve system, over rare words,
or morphological different words. For exam-
ple if the word happier is already learned by
the system along with its lemma and happily
is never seen by the system, then their com-
mon lemma happy can help to place this word
close to happier and some meaning can be
drawn from it.

2. Subword tags: This can help system to un-
derstand that two subwords of a word are not
independent and give extra information about
actual boundary of whole word. So this way
while translation system should consider all
the subwords. These subwords tags are of
four types viz. beginning (B), inside (I), end
(E) and whole word (O).

3. POS tags: These can help in disambiguation,
when same word can have different meanings
and/or semantics as per the sentence.

For extracting linguistic features for English lan-
guage Stanford CoreNLP (Manning et al., 2014)
can be used.

4.2 Representation of Linguistic Features in
NMT

NMT systems take the continuous space repre-
sentation of words, so to incorporate linguistic
features into it their continuous space representa-
tion or embeddings have to feed in it. In subword
NMT linguistic information is represented at
subword level, and all the subwords of a word
share the same linguistic features except subword
tags which will be explained later in this section.

All the linguistic information is provided at
encoder part along with word embedding in the
form of concatenated embeddings of features.
Rest of the architecture remains same as of
attention based encoder-decoder NMT systems.

Each subword/word is represented as a one-
hot notation xi which then gets transformed to
continuous space vector si using equation 8 as

shown below, where E is the word embedding
matrix.

si = Ewi

With linguistic features, each linguistic feature is
initially represented by one-hot encoding which
then transformed to continuous space representa-
tion using equation 8, but with their own embed-
ding matrix and finally gets concatenated to repre-
sent final embedding of input word/subword along
with linguistic information as shown in equation
19.

si = ‖Kk=1Ekf
i
k (19)

Where ‖ is the vector concatenation operator,
Ek is the matrix that contains word embeddings
of kth features and f ik is the kth feature of ith

word/subword of the sentence. Rest of the whole
architecture of attention based encoder-decoder is
same as described in section 2.3.

4.3 Factored NMT Results

(Sennrich and Haddow, 2016) performed experi-
ments on WMT’16 English-German corpus of ap-
proximately 4.2 million sentences. They found
that input linguistic features help to improve per-
formance of NMT systems. Their results are
shown in figure 4.

Figure 4: German-English translation results:
best perplexity on dev (newstest2013), and BLEU
and CHRF3 on test15 (newstest2015) and test16
(newstest2016). BLEU scores that are signifi-
cantly different (p ¡ 0.05) from respective baseline
are marked with (*).source1

5 Conclusion

We have also gone through the neural machine
translation approach. We realized the NMT model
suffers from long sentence translation and rare or
out-of-vocabulary words. The long sentence trans-
lation issue is addressed by attention based NMT
model using LSTM activation units. Rare or Out-
of-vocabulary words translation problem can be
addressed using sub-word segmentation like Byte-
pair Encoding (BPE). We explored factored NMT

1(Sennrich and Haddow, 2016) https://arxiv.
org/pdf/1606.02892.pdf

https://arxiv.org/pdf/1606.02892.pdf
https://arxiv.org/pdf/1606.02892.pdf


approach which makes use of linguistic informa-
tion of sentence, and realized it also improves the
performance of NMT systems.
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