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Dependency parsing plays a vital role in major
NLP (Natural Language Processing) applications
like Machine Translation, Entity Extraction, etc.
However, getting a correct dependency parse tree
may prove to be a difficult task. There are multiple
reasons as follows:

1. Poor Resources: Some languages may not
have properly annotated data, which makes
it nearly impossible to build or train a highly
accurate dependency parser.

2. Lack of NLP Tools: Basic NLP tools which
help for dependency parsing may not be
available for some languages. These tools
include lemmatizer, Part of Speech tagger
(POS), Named Entity Recognizer (NER), etc.

To solve the above problem, we can make use
of a language which has ample NLP resources
and tools. So the biligual approach is useful
for the dependency parsing and PP-attachment
correction. In the following sections, we look at
several bilingual approaches

1 Bilingual Parsing

Parallel treebanks have been receiving interest in
recent years, primarily due to their potential use
in statistical machine translation. In the following
sections, we look into some existing approaches
for bilingual parsing and building parallel tree-
banks.

1.1 Transfer of Delexicalized Parsers
Delexicalized parsers have been used to directly
transfer between languages, producing signifi-
cantly higher accuracies than unsupervised parsers
(McDonald et al., 2006). The authors use a con-
straint driven learning algorithm where constraints
are drawn from parallel corpora to project the fi-
nal parser. They show that simple methods for in-
troducing multiple source languages improve the

overall quality of the resulting parsers. They re-
port results in eight languages.

1.2 Joint Parsing and Alignment with
Weakly Synchronized Grammars

(Burkett et al., 2010) present a unified joint model
for simultaneous parsing and word alignment. To
flexibly model syntactic divergence, the authors
have developed a discriminative log-linear model
over two parse trees and an ITG derivation which
is encouraged but not forced to synchronize with
the parses.

The model exploits synchronization where pos-
sible to perform more accurately on both word
alignment and parsing, but also allows indepen-
dent models to dictate pieces of parse trees and
word alignments when synchronization is impos-
sible. This notion of ”weak synchronization” is
parameterized and estimated from data to maxi-
mize the likelihood of the correct parses and word
alignments.

1.3 Bilingual Informed Parsing

(Haulrich, 2012) present three data-driven ap-
proaches that exploit bilingual information.
Bilingually informed parsing is monolingual
parsing that is informed by the syntactic structures
of sentences parallel to those being parsed.

Next, they present an iterative approach that rests
on the assumption that the better the structures
that guide the parsing, the better the output of the
parser.

Thirdly, they propose a classic reranking approach
where monolingual parses are reranked, based on
bilingual features. The authors report considerable
improvements over the baseline for the first and
the third approaches.



2 Dual Decomposition

Many problems in NLP require an argmax com-
putation of the form y∗ = argmaxy∈Y f(y),
which essentially means finding that y for which
the score ( is maximized. In the case of parsing,
for instance, this stands for finding the score for
all possible parse trees y ∈ Y for a given sentence
, and return that which has the highest value for
(i.e., the parse tree with the highest score. This is
called the decoding problem.

Decoding problems in NLP can be solved using
Dual Decomposition. Dual decomposition, or
more generally, Lagrangian Relaxation, is a clas-
sical method for combinatorial optimization and
has been applied to several inference problems in
NLP (Rush, 2012). It involves solving of com-
plicated optimization problems by decomposing
them into two or more sub-problems, and solving
iteratively.

The solutions to the sub-problems have some
sort of agreement which is enforced in the form
of linear constraints. The chosen sub-problems
can be solved efficiently using exact combinato-
rial algorithms. The agreement constraints are
incorporated using Lagrange multipliers, and an
iterative algorithm for example, a sub-gradient
algorithm is used to minimize the resulting dual.

Dual decomposition algorithms have the following
properties:

• They are typically simple and efficient. For
example, sub-gradient algorithms involve
two steps at each iteration: first, each of the
sub-problems is solved using a combinatorial
algorithm; second, simple additive updates
are made to the Lagrange multipliers.

• They have well-understood formal proper-
ties, in particular through connections to lin-
ear programming (LP) relaxations.

• In cases where the underlying LP relaxation
is tight, they produce an exact solution to the
original decoding problem, with a certificate
of optimality. In cases where the underlying
LP is not tight, heuristic methods can be used
to derive a good solution; alternatively, con-
straints can be added incrementally until the
relaxation is tight, at which point an exact so-
lution is recovered.

The agreement constraints are incorporated using
Lagrange multipliers, and an iterative algorithm
for example, a sub-gradient algorithm is used to
minimize the resulting dual. To understand how
dual decomposition works, let us take an example
from (Rush and Collins, 2012).

Consider the problem of finding the constituency
parse tree of a sentence and the parts-of-speech
(POS) tags of the words in the sentence (Figure 1
and Figure 2).

Figure 1: Constituency Parse Tree

Figure 2: POS Tagged Sentence

For a given sentence of n words, we maximize:

argmaxy∈Y,z∈Zf(y) + g(z)

such that:

∀i ∈ {1 to n} ∀t ∈ T, y(i, t) = z(i, t)

Adding the constraints to the objective function by
introducing Lagrangian multipliers u

L(u, y, z) = f(y)+g(z)+
∑
i,t

u(i, t)(y(i, t)−z(i, t))

By distributing terms and rearranging we obtain
the following equation

L(u, y, z) = (f(y) +
∑
i,t

u(i, t)y(i, t))



+(g(z)−
∑
i,t

u(i, t)z(i, t))

The Lagrangian dual of the problem becomes:

L(u) = argmaxy∈Y,z∈ZL(u, y, z)

= argmaxy∈Y (f(y) +
∑
i,t

u(i, t)y(i, t))

Our objective is to find the best constituency parse
and POS tags for a given sentence, such that they
agree on the tag labels. Let f(y) be the score of
the Constituency Parser and g(z) be the score of
the POS tagger. Let T be the set of all POS tags.
For any parse tree y, for any position i ∈ 1ton,
for any tag t ∈ T , y(i, t) = 1 if parse tree y has
tag t at position i and y(i, t) = 0 otherwise. For
a tag sequence, z(i, t) = 1 if the tag sequence has
tag i at position i, 0 otherwise.

Assuming that the individual maximization prob-
lems can be solved efficiently, we can solve the
above optimization problem by iteratively updat-
ing the sub-gradient.

3 Joint Inference of NLP Tasks

Problems at the higher of the NLP pyramid often
need to be solved by the aid of the lower level
NLP tasks. POS tagging, for example, is essential
for the task of syntactic parsing. Similarly, in the
tasks of morphology analysis and POS tagging,
POS tagging may use word morphology as a
feature, while a morphology analyzer may also
use POS tag information for disambiguation in
obtaining the correct word roots and suffixes.
Joint inference is an effective approach to avoid
cascading of errors when inferring multiple
natural language tasks. It allows bidirectional
flow of information, allowing for corrections to
be made for tasks earlier in the pipeline using the
output of later tasks.

Also, there are multiple NLP tasks related to
one another, and it makes sense to take a joint
approach in solving them. The tasks of word
sense disambiguation and semantic role labelling
draw heavily from one another.

Joint inferencing has an important role to play
in the situation of performing the same NLP
task across languages. In these scenarios, the
power of jointly performing the task comes from

parallel corpora. It has been shown that bilingual
texts annotated with NER tags can provide useful
additional training sources for improving the
performance of standalone monolingual taggers
(Wang et al., 2013). This is because text in two
languages may contain complementary cues that
help to disambiguate named entity mentions.

In the current work, we jointly infer dependency
parsing for a pair of language, and also, use joint
inference for the tasks of dependency parsing and
word alignments.

3.1 Joint Modelling of Entities, Relation
Extraction and Coreference Resolution

(Singh et al., 2013) have proposed a single, joint
probabilistic graphical model for classification
of entity mentions (entity tagging), clustering of
mentions that refer to the same entity (coreference
resolution), and identification of the relations
between these entities (relation extraction).

Entity tagging is the task of classifying each entity
mention according to the type of entity to which
they refer. The input for this task is the set mention
boundaries and the sentences of a document. For
each mention mi, the output of entity tagging is a
label ti from a predefined set of labels T . The set
of labels used in newswire consist of PERSON,
ORGANIZATION, GEO-POLITICAL, LOCA-
TION, FACILITY, VEHICLE, and WEAPON.
It is generally modelled as a Maximum Entropy
Model. This model may be written as a graphical
model by defining a factor ψT (mi, ti),for each
entity tag variable ti.

Figure 3: Individual Classification Models

Relation extraction labels each entity mention
pair in the same sentence with its relation as
expressed in that sentence, or NONE if no relation
is expressed. This task is often represented as
variables ri,j that represent the type of the relation



Figure 4: Joint Model of Entity Tagging, Resolu-
tion and Relations

where mi, is the first argument, mj , the second ar-
gument, and the type comes from a predefined set
of labels R3. The model is represented as factor
templates ψL

R(mi,mj , rij) and ψL
R(mi,mj , ti, tj)

over variables.

Coreference is the task of linking mentions within
a document that refer to the same real-word
entity. Given the mentions in a document, and the
coreference system predicts entities by identifying
links between the mentions. A common approach
to the coreference task is to classify pairs of
mentions as coreferent or not, i.e. for pairs of
mentions mi and mj that appear in the same
document, there is a variable cij ∈ 0, 1. The
parameters of the model are defined by a factor
template ψC(Cij ,mi,mj , ti, tj) as shown in
Figure 3

A model is defined that directly represents the
dependencies between the three tasks by modeling
the joint distribution over the three tasks (Figure
4).

p(t, r, c|m) ∝
( ∏

ti∈T
ψT (mi, ti)

.
∏

ci,j∈C
ψC(Ci,j ,mi,mj , ti, tj)

.
∏

ri,j∈r
ψL
R(mi,mj , ri,j)ψ

L
R(mi,mj , ti, tj)

)
Instead of representing a distribution over the la-
bels of a single task conditioned on the predictions

from another task, these factors now directly rep-
resent the joint (un-normalized) distribution over
the tasks that they are defined over.

3.2 Joint inference of NER and Alignment
(Wang et al., 2013) developed a bilingual NER
model by embedding two monolingual CRF-based
NER models into a large undirected graphical
model, and introducing additional edge factors
based on word alignment. They also propose an
extension with two uni-directional HMM-based
alignment models, and perform joint decoding of
NER and word alignments.

The new model factors over one NER model and
one word alignment model for each language,
plus a joint NER-alignment model which not
only enforces NER label agreements but also
facilitates message passing among the other four
components.

Let us take a closer look at their formulation. Let
k(ye) be the un-normalized log-probability of tag
sequence ye.

At inference time, the maximization objective is:

maxye,yfk(y
e) + l(yf )

such that ∀(i, j) ∈ A, yei = yfj .

i.e. for parallel sentence in two languages, for ev-
ery pair of aligned words, the NE tag should be
same for both languages. A dual decomposition
based inference algorithm has been used for de-
coding.

4 Disambiguation of Prepositional
Phrase Attachments

4.1 Need for PP-attachment Disambiguation
Prepositional phrase (PP) attachment is a major
source of ambiguity in languages like English. It
has a substantial challenge to Machine Translation
(MT) between English and languages that are
not characterized by PP attachment ambiguity.
English is syntactically ambiguous with respect to
PP attachment.

Consider this example:

I washed a jeans with pockets.



The attachment for the preposition with is ambigu-
ous. Syntactically, it can attach to the verb wash
or with the noun jeans. This a problem of PP at-
tachment disambiguation and needs to be solved
for applications like Machine Translation.

4.2 Current State of the Art
PP Attachment Disambiguation using
Multilingual Aligned Data
The work by Lee Schwartz and Takako Aikawa
(Schwartz et al., 2003) focuses on solving the
English PP attachment problem with the help of
multilingual aligned parallel data with an unsuper-
vised system. They have used English-Japanese
parallel data to solve English PP attachment
disambiguation problem.

The approach is unsupervised, but it does require a
large, parsed, sentence-aligned, bilingual corpus.
It exploits the unambiguous nature of PP attach-
ment in Japanese. In this system, reattachment
of English PPs takes place in the English analy-
sis component after an initial parse is produced.
By design, the initial parse has low right attach-
ments of PPs. The reattachment module traverses
the nodes of the parse tree and marks all the po-
tential attachment sites for each PP. two different
types of data: (i) data that serve as positive ev-
idence for VP attachment (ii) data that serve as
negative evidence for VP attachment. Positive ev-
idence consists of examples for which VP attach-
ment is suggested by the Japanese data. Negative
evidence consists of examples for which NP at-
tachment is suggested.

A Rule-Based Approach to PP Attachment
Disambiguation
This work by (Brill and Resnik, 1994) is a
rule-based approach to prepositional phrase
attachment, disambiguation. A set of simple
rules is learned automatically to try to prediet
proper attachment based on a number of possible
contextual cues. It employs a ”Transformation-
Based Error-Driven Learning System” for PP
attachment.

Figure 5 shows the steps. First, unannotated text
is passed through the initial annotator. The anno-
tated text is then compared with the truth i.e. the
manually annotated data and transformations are
learned that are applied to the output of the initial
state annotator to make it better resemble the truth.

Figure 5: Transformation-Based Error-Driven
Learning

Semantic Dictionary for PP Attachment
Disambiguation
(Stetina and Nagao, 1997) proposed a supervised
learning method for PP attachment based on a
semantically tagged corpus. Many a times, the PP
attachment is based on the contextual information.
But do not have a computer database containing
life time experiences, and therefore we have to
find another way of how to decide the correct
PP attachment. One of the solutions lies in the
exploration of huge textual corpora, which can
partially substitute world knowledge.

A number of supervised and unsupervised ap-
proaches for solving the PP-attachment problem
have been proposed in the literature. (Ratnaparkhi
et al., 1994) uses a Maximum Entropy Model for
solving the PP-attachment decision. (Agirre et al.,
2008) have used WSD-based strategies in different
capacities to solve the problem of PP-attachment.
(Olteanu and Moldovan, 2005) have attempted to
solve the PP-attachment problem as a classifica-
tion problem of attachment either to the preceding
verb or the noun, and have used Support Vector
Machines (SVMs) that use complex syntactic and
semantic features.

5 Statistical Machine Translation

5.1 Alignment

Alignment is the mapping between the words in
one language to another. An alignment function



maps each output word in the foreign language at
position j to an English input word at position i.

Let us assume that the task is to translate from
a foreign language F (the ”source” language) into
English (the ”target” language) Let F be a sen-
tence in the foreign language with word f =
(f1, f2, . . . , flf ), where lf is the length of the sen-
tence.
and fj for j ∈ {1tom}, is the jth word in the sen-
tence. e refers to an English sentence, e is equal to
e = (e1, e2, . . . , ele) where le is the length of the
English sentence.

The alignment function maps each English out-
put word at position i to a German input word at
position to j

a : i→ j (1)

5.2 IBM Models
Models that decompose a joint probability P(x,
y) into terms P(x) and P(x|y) are known as noisy
channel models. The IBM models (?) are an in-
stance of a noisy-channel model, and they have
two components:

• A language model that assigns a probability
p(e) for any sentence e = (e1, e2, . . ., el)
in English. The parameters of the language
model are estimated from very large quanti-
ties of English data.

• A translation model that assigns a conditional
probability p(f|e) to any foreign/English pair
of sentences. The parameters of this model
are estimated from the translation examples.

Given these two components of the model, follow-
ing the noisy channel approach, the output of the
translation model on a new foreign language sen-
tence f is:

e∗ = argmaxe∈Ep(e)× p(f |e) (2)

where E is the set of all sentences in English.
Thus the score for a potential translation is the
product of two scores: first, the language-model
score p(e) , which gives a prior distribution over
which sentences are likely in English; second,
the translation-model score p(f|e), which indicates
how likely we are to see the French sentence f as a
translation of e.

Five models of increasing complexity were pro-
posed in the original work on statistical machine

translation at IBM. The advances of the five IBM
models are: IBM Model 1: lexical translation;
IBM Model 2: adds absolute alignment model;
IBM Model 3: adds fertility model; IBM Model
4: adds relative alignment model; IBM Model 5:
fixes deficiency.

In the following sections, we look at these mod-
els briefly.

IBM Model 1
IBM Model 1, which is a generative model for sen-
tence translation, is based solely on lexical trans-
lation probability distributions. Lexical transla-
tion probability is simply based on the count of the
times a word in the foreign language is translated
to a word in English in a large parallel corpus. For
each output word e that is produced by our model
from an input word f , we want to factor in the
translation probability p(f|e), and nothing else.

We define the translation probability for a for-
eign sentence f = (f1, f2, . . . , flf ) of length lf to
an English sentence e = (e1, e2, . . . , ele) of length
le with an alignment of each English word ej to a
foreign word fi according to the alignment func-
tion a : j → i as follows:

p(e, a|f) = ε

(lf + 1)le

le∑
j=1

t(ej |fa(j)) (3)

Let us take a closer look at this formula. The
core is a product over the lexical translation prob-
abilities for all le generated output words ej . The
fraction before the product is necessary for nor-
malization. Since we include the special NULL
token, there are actually lf + 1 input words.
Hence, there are (lf + 1)le different alignments
that map lf + 1 input words into le output words.
The parameter ε is a normalization constant, so
that p(e, a|f) is a proper probability distribution,
meaning that the probabilities of all possible En-
glish translations e and alignments a sum up to
one:

∑
e,a p(e, a|f) = 1

IBM Model 2
IBM Model 2 adds an explicit model for align-
ment. The translation of a foreign input word
in position i to an English word in position j is
modeled by an alignment probability distribution
a(i|j, le, lf )

IBM Model 2 is a two-step process, with a lex-
ical translation step and an alignment step. The



first step is lexical translation as in IBM Model 1,
again modeled by the translation probability t(e |
f). The second step is the alignment step. The two
steps are combined mathematically to form IBM
Model 2:

p(e, a|f) = ε

le∏
j=1

t(ej |fa(j))a(a(j)|j, le, lf ) (4)

IBM Model 3
IBM model 3 also models the fertility of output
words. Fertility is the notion that input words pro-
duce a specific number of output words in the out-
put language. A word in the source language may
correspond to multiple words in the target lan-
guage.

The fertility of input words is modelled with a
probability distribution n(ϕ|f)

For each foreign word f, this probability distri-
bution indicates how many ϕ = 0, 1, 2, ... out-
put words it usually translates to. The parame-
ters of Model 3 are a set of fertility probabilities,
translation probabilities and distortion probabili-
ties, which gives us

p(e|f) =
∑
a

p(e, a|f)

=

lf∑
a(1)=0

...

lf∑
a(le)=0

lf∏
j=1

(
le − ϕ0

ϕ0

)
pϕ0
1 ple−ϕ0

0

lf∏
i=1

ϕi!n(ϕi|fi)(5)

×
le∏

j=1

t(ej |fa(j))d(j|a(j), le, lf ) (6)

IBM Models 4 and 5
In IBM Model 4, a relative distortion model is
introduced. In this relative distortion model, the
placement of the translation of an input word is
typically based on the placement of the transla-
tion of the proceeding input word. A problem with
Model 3 and Model 4 is that in these models, it is
possible that multiple output words may be placed
in the same position. This is called deficiency.
The distortion model in IBM Model 5 handles de-
ficiency and is based on vacant word positions.
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