
Eurown: an EuroWordNet module for Python

Neeme Kahusk
Institute of Computer Science

University of Tartu, Liivi 2, 50409 Tartu, Estonia
neeme.kahusk@ut.ee

Abstract

The subject of this demo is a Python module for

editing and managing EuroWordNet database files.

Python is a programming language that is dynamic,

object-oriented, and has shallow learning curve. In

this paper we give a short overview of the eurown

module for managing EuroWordNet export files.

This tool run on broad range of hardware platforms,

including Windows, MacOS, Linux, and Unix.

1 Introduction

In this paper we present a Python module for de-
veloping EuroWordNet.

The subject of this demo are open-source tools
for editing and managing EuroWordNet database
files. The Python module serves as API and
Graphic User Interface is implemented in Qt.
These tools run on broad range of hardware plat-
forms, including Windows, MacOS, Linux, and
Unix.

The Python programming language is dynamic,
object-oriented, and interpreted. It offers strong
support for integration with other languages and
tools, and comes with extensive standard libraries.
Python has a very shallow learning curve and great
online learning resource (Python Tutorial, 2009).
It can be used for many kinds of software develop-
ment, Natural Language Processing among them.

The EWN module enables a programmer to
handle EuroWordNet synsets and semantic rela-
tions easily. Synsets are implemented as objects,
operations on them as methods. Calculations on
synsets can be used both in interactive Python ses-
sions and by importing into other modules, like
word sense disambiguation.

There are already two tools that make use of
the eurown module. These are Kykap, a tool for
lexicographers to help manual word sense disam-
biguation, and OpenPolaris, the open-source pro-
gram that has roughly the same functionality as

Polaris by Novel once had. Both of these applica-
tions are built using Qt and PyQt.

2 Python programming language

Python was created in the early 1990s by Guido
van Rossum at Stichting Mathematisch Centrum
in the Netherlands. Van Rossum is considered
Python’s principal author, although there have
been many other contributors. The main devel-
opment team has resided in many places, includ-
ing CNRI and Zope Corporation. Nowadays the
Python-related intellectual property is owned by
the Python Software Foundation, a non-profit or-
ganization created specifically for this purpose.
All Python releases are Open Source, most Python
releases have been GPL-compatible. (Python
2.6.2 license, 2009).

Although Python is a flexible answer in pro-
grammer’s choice of styles, its bright side come
out with object-oriented approach. Most of its li-
brary programs, called modules in Pythonic, are
designed bearing object-oriented usage in mind.
They contain classes of objects, and methods and
attributes to use with objects. All recent versions
of Python make it possible to use even more flexi-
ble tools — properties. They are closely related to
attributes, but use get, set, and delete functions to
manage. We have used mostly properties instead
of attributes, so there are no attributes in the sec-
tion of class descriptions (see Section 3).

Python can be used for many kinds of soft-
ware development, Natural Language Processing
among them. There are NLP modules for Python
developed since 2002, making up the Natural Lan-
guage Toolkit package. The package has several
subpackages for accessing text corpora and lexi-
cal resources, processing raw text, analyzing sen-
tence structure, and other tasks. (Bird et al., 2009;
Loper and Bird, 2002)

There are tools and resources for browsing
wordnet data, but they concern Princeton Word-

Net only, not EuroWordNet. According to NLTK
Guides1, WordNet Interface is accessed like cor-
pus reader, and can be used for finding words,
synsets, lemmas, and three types of similarities
based on hyperonym hierarchy.

There is a Python module for parsing Eu-
roWordNet data developed by Marsi (2009), but
the development of this code seems to be stopped
in 2004.

3 Synset structure in EuroWordNet
export file and eurown module
contents

EuroWordNet import-export format follows Ged-
com standard and is defined by Louw (1998).
The main structure of the file format reflects the
buildup of the database itself. A record in the
database consists of level number, field name, and
optional value. Level 0 records can have optional
record number, enclosed between ‘@’-tokens.

0 WORD_MEANING
1 PART_OF_SPEECH "n"
1 VARIANTS

futher details of
the variants go here

1 INTERNAL_LINKS
futher details of
the internal links go here

1 EQ_LINKS
futher details of
the equivalence links go here

1 PROPERTIES
futher details of
the properties go here

Figure 1: Main structure of the
WORD MEANING record (for a noun synset).
The records for WORD INSTANCE have PROP-
ERTY VALUES section instead of PROPERTY,
and PART OF SPEECH “pn”. Adopted from
(Louw, 1998)

Classes in the eurown module follow the main
data structure of the EuroWordNet database. The
most used class is Synset representing word mean-
ing objects. On the same level, WordInstance
is also defined, it derives from the Synset class.
There is also a class for wordnet — this makes it

1http://nltk.googlecode.com/svn/trunk/
doc/howto/wordnet.html

0 @234@ WORD_MEANING
1 PART_OF_SPEECH "n"
1 VARIANTS
2 LITERAL "amazona"
3 SENSE 1
3 STATUS "New"
3 USAGE_LABELS

4 USAGE_LABEL "sub"
5 USAGE_LABEL_VALUE

"Medicine"
3 FEATURES

4 FEATURE "number"
5 FEATURE_VALUE "singular"

3 EXTERNAL_INFO

Figure 2: A nonsensical example of a synset
record. Adopted from (Louw, 1998).

easy to use multiple wordnets in one application.
There are classes for Level 1 records as well —
namely Literal, InternalRelations, and ILI Rela-
tions. For an overview of classes in eurown, and
their content, see Figure 3. Main classes and their
properties and methods are listed in the following
subsections.

3.1 class WordNet()

Methods:
make indexes() Makes all necessary indexes.

This procedure takes time, thatswhy the in-
dexes are made all at once and pickled2 into
files.

Properties:
synsetFileOffsetIndex Dict keys are synset num-

bers and values file offsets. Read only.

synsetTupleFileOffsetIndex Dict keys are synset
tuples3 (literal, pos, senseNo) and values file
offsets. Read only.

literalIndex Dict keys are literals, values lists4 of
synset numbers. Read only.

synsetObjectIndex Dict keys are synset numbers
and values Synset objects. Read only.

2Python uses its own method to write objects into text
files. It is called pickling.

3Henceforward ‘tuple’ is meant as Python data structure,
immutable sequence type.

4Henceforward ‘list’ is meant as Python data structure,
mutable sequence type.

Figure 3: Class diagram of eurown module.

3.2 Class Synset()
Properties:
ident – synset identification number

pos – Part of Speech. One of [n, v, a, b]

variants – member of Variants class: list with
Variant class members

links – member of Links class: list with Link
class members

eqLinks – member of EqLinks class: list with
EqLink members

properties – list of properties

firstLiteral – first literal and its sense number.
Read-only. Computed by first member of
Variants list.

literals – list of literals in Synset (without sense
numbers). Read-only.

polarisText – output of Synset in Polaris format.
Read-only

Methods:
addVariant(variant) adds a variant to Synset,

variant must be an instance of Variant class.

addRelation(relation, relSynset) adds a synset
to Synset, relSynset must be an instance of
Synset class.

addILIRelation(relation, relSynset) adds a
synset to Synset, relSynset must be an
instance of Synset class (from ILI synsets
file).

3.3 Class Variant()

literal Literal of the current variant

sense Sense of the current variant. Int type.

gloss Gloss (explanation) of current sense.

examples Examples of usage. List of strings (sen-
tences).

3.4 Class Link()

name link name (‘has hyperonym’,
‘has hyponym’ etc.)

literal literal of the target concept

sense sense number of the target concept

pos part of speech of the target concept

There are also planned properties for adding
and reading external info, but they are not imple-
menteid into the module yet.

3.5 Other classes

There is also class EqLink() for managing ILI re-
lations. Class WordInstance()] is mostly the same
as Synset class, only pos is limited to “pn”.

3.6 Functions

Functions defined in eurown module:

read synset(fn, milestone) reads synset from file
fn starting from byte milestone,returns tuple
of (synset, new milestone). This function is
also useful for reading whole file into list of
synsets.

def ask for keyword Mostly for testing pur-
poses, serves as a model of an application for
displaying synset information as a response
to keyword.

4 Discussion and examples

There is a helper program Kykap for lexicogra-
phers, in order to make easier the task of manual
word sense disambiguation. The program reads
and writes corpus files, lets to set many options
(encoding, POSes to disambiguate, WordNet file).
Eurown module makes it easy to add new senses
and even new synsets (see Figure 4).

Kykap and OpenPolaris are built on eurown
module and use PyQt for building GUI. This
makes it possible to run the code on multiple plat-
forms. They are tested on Linux and Windows
platforms.

The eurown module can be used as a building
block for bigger applications, or as imported mod-
ule in interactive Python session. For an example
of a session on a Linux computer see Figure 5.

The eurown module makes it easy to add,
edit and remove synsets, variants, variant details,
and links to EuroWordNet database. It is possi-
ble to use more than one Polaris export file at a
time, so one can work with databases coming from
different languages. Although we have tested it
with ILI coming from WordNet 1.5, it would be
possible to use newer versions as well. Output
as polarisText makes it easy to compare the
added or edited synsets to these that are made with
Polaris, and import to it.

5 License and availability

The Python module and helper programs
are licensed under GPL license and freely
downloadable as Python source files at
http://www.cl.ut.ee/inimesed/
nkahusk/tarkvara/ewnpy/ .

Acknowledgments

This project is supported by grants SF0180078s08
“Development and implementation of formalisms
and efficient algorithms of natural language
processing for the Estonian language” and
EKKTT09-62 “Resources and tools for Estonian
Semantics”.

References
Steven Bird, Ewan Klein, and Edward Loper 2009

Natural Language Processing with Python — An-
alyzing Text with the Natural Language Toolkit
O’Reilly Media http://www.nltk.org/book

Edward Loper and Steven Bird 2002 NLTK: The
Natural Language Toolkit Proceedings of the ACL
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Compu-
tational Linguistics, pp 62–69, Philadelphia, Asso-
ciation for Computational Linguistics.

Michael Louw 1998 Polaris User’s Guide: The Eu-
roWordNet Database Editor Lernout & Hauspie
Antwerp, Belgium

Erwin Marsi 2009 Retrieved October 5,
2009 Homepage of Erwin Marsi: ewnpy
http://ilk.uvt.nl/ emarsi/software/ewnpy.html

Python 2.6.2 License 2009
http://www.python.org/download/releases/2.6.2/license/

The Python Tutorial 2009
http://docs.python.org/tutorial/

Figure 4: Screenshot of Kykap program. This application is built using the eurown module.

Python 2.6 (r26:66714, Feb 3 2009, 20:52:03)
[GCC 4.3.2 [gcc-4_3-branch revision 141291]] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from eurown import *
>>> a = Synset(pos=’n’)
>>> print a.polarisText
0 WORD_MEANING

1 PART_OF_SPEECH "n"
>>> b=Variant(literal=’test’,sense=1,gloss="just testing")
>>> a.addVariant(b)
>>> print a.polarisText
0 WORD_MEANING

1 PART_OF_SPEECH "n"
1 VARIANTS

2 LITERAL "test"
3 SENSE 1
3 DEFINITION "just testing"

>>>

Figure 5: Screen dump of an interactive Python session using eurown module.

